1.1 Los op vir x:
1.1.1 $x^2 + 2x - 15 = 0$ (3)
1.1.2 $5x^2 - x - 9 = 0$ (Los jou antwoord korrek tot TWEE desimale syfers.) (4)
1.1.3 $x^2 \\leq 3x$ (4)
1.2 Gegee: $\frac{a + 64}{a} = 16$ (3)
1.2.1 Los op vir a - NSC Mathematics - Question 1 - 2022 - Paper 1
Question 1
1.1 Los op vir x:
1.1.1 $x^2 + 2x - 15 = 0$ (3)
1.1.2 $5x^2 - x - 9 = 0$ (Los jou antwoord korrek tot TWEE desimale syfers.) (4)
1.1.3 $x^2 \\leq 3x$ (4)
1.2 Geg... show full transcript
Worked Solution & Example Answer:1.1 Los op vir x:
1.1.1 $x^2 + 2x - 15 = 0$ (3)
1.1.2 $5x^2 - x - 9 = 0$ (Los jou antwoord korrek tot TWEE desimale syfers.) (4)
1.1.3 $x^2 \\leq 3x$ (4)
1.2 Gegee: $\frac{a + 64}{a} = 16$ (3)
1.2.1 Los op vir a - NSC Mathematics - Question 1 - 2022 - Paper 1
Step 1
1.1.1 Los op vir x:
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve the equation x2+2x−15=0, we can factor it as follows:
(x+5)(x−3)=0
Setting each factor to zero gives:
x+5=0⇒x=−5
x−3=0⇒x=3
Thus, the solutions are x=−5 or x=3.
Step 2
1.1.2 Los op vir x:
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
For the equation 5x2−x−9=0, we apply the quadratic formula:
x=2a−b±b2−4ac
where a=5, b=−1, and c=−9. Let's calculate:
Calculate the discriminant:
b2−4ac=(−1)2−4(5)(−9)=1+180=181
Plug the values back into the formula:
x=2(5)−(−1)±181=101±181
Approximating the square root:
181≈13.45
Thus, the solutions are:
x≈101+13.45≈1.45andx≈101−13.45≈−1.25
Step 3
1.1.3 Los op vir x:
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve x2≤3x, we first rearrange it to standard form:
x2−3x≤0
Factoring gives:
(x)(x−3)≤0
Next, we find the critical points, which are x=0 and x=3. Testing intervals:
For x<0, choose x=−1: (−1)(−4)=4 (not in solution)
For 0<x<3, choose x=1: (1)(−2)=−2 (in solution)
For x>3, choose x=4: (4)(1)=4 (not in solution)
The solution is therefore:
0≤x≤3
Step 4
1.2.1 Los op vir a.
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
We start with the equation:
aa+64=16
Cross-multiplying yields:
a+64=16a
Rearranging to isolate a:
64=15a⇒a=1564≈4.27
Step 5
1.2.2 Ons vervolgens op vir x:
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Starting with the equation:
2x+26+x=16
We can express 16 as 24, leading to:
2x+26⋅2x=24
Factoring gives:
2x(1+64)=24⇒65imes2x=24
Dividing by 65:
2x=6524
Taking log base 2:
x=log2(6516)
Step 6
1.3 Sonder die gebruik van 'n sakrekenaar, bereken die waarde van $\sqrt{\frac{2^{1002} + 2^{1006}}{17(2)^{99}}}$
97%
121 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
We can factor the expression inside the square root:
Rewrite the numerator:
21002+21006=21002(1+24)=21002⋅17
The expression then simplifies:
17(2)9921002⋅17=(2)9921002=23=21.5=22
Step 7
1.4 Los gelijktig vir x en y op:
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
We have the system of equations:
2x−y=2 (1)
x1−3y=1 (2)
From (1), express y:
y=2x−2
Substituting into (2):
x1−3(2x−2)=1x1−6x+6=1x1=6x−5
Multiplying through by x gives:
1=6x2−5x6x2−5x−1=0
Using the quadratic formula:
x=2a−b±b2−4ac
Where a=6, b=−5, and c=−1.
The roots can be calculated to find corresponding values of y.