'n Konvergente meetkundige reeks wat slegs uit positiewe terme bestaan, het eerste term $a$, constante verhouding $r$ en $n$'de term, $T_n$, sodat \[ \sum_{n=3}^{\infty} T_n = \frac{1}{4} \]
3.1 Indien $T_1 + T_2 = 2$, skryf 'n uitdrukking vir $a$ in terme van $r$ neer - NSC Mathematics - Question 3 - 2017 - Paper 1
Question 3
'n Konvergente meetkundige reeks wat slegs uit positiewe terme bestaan, het eerste term $a$, constante verhouding $r$ en $n$'de term, $T_n$, sodat \[ \sum_{n=3}^{\in... show full transcript
Worked Solution & Example Answer:'n Konvergente meetkundige reeks wat slegs uit positiewe terme bestaan, het eerste term $a$, constante verhouding $r$ en $n$'de term, $T_n$, sodat \[ \sum_{n=3}^{\infty} T_n = \frac{1}{4} \]
3.1 Indien $T_1 + T_2 = 2$, skryf 'n uitdrukking vir $a$ in terme van $r$ neer - NSC Mathematics - Question 3 - 2017 - Paper 1
Step 1
Indien $T_1 + T_2 = 2$, skryf 'n uitdrukking vir $a$ in terme van $r$ neer.
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
In a geometric series, the first term is given by T1=a and the second term is given by T2=ar. The equation states that:
T1+T2=a+ar=2
Factoring out a gives:
a(1+r)=2
From this, we can express a in terms of r:
a=1+r2
Step 2
Bereken die waardes van $a$ en $r$.
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Using the sum of the infinite series, we know:
S=1−rT1=1−ra
Since we have already established that:
S=T1+T2+n=3∑∞Tn=T1+T2+1−rT3
Thus:
S=2+1−rT3
From the problem statement:
S=41
So equating the two:
2+1−rT3=41
We know that:
T3=ar2=1+r2r2
Substituting into the equation gives:
2+1−r1+r2r2=41
Multiply through by (1−r)(1+r) to eliminate the fractions and solve for r:
Rearranging gives us:
The expression simplifies to give:
After solving, we find two values: r=31 or r=1. Typically, we consider r<1 for convergence, so: