Los op vir x:
1.1.1 $x^2 + 9x + 14 = 0$
1.1.2 $4x^2 + 9x - 3 = 0$ (korrek tot TWEE decimal plekke)
1.1.3 $ ext{√}x^2 - 5 = 2 ext{√}x$
Los op vir x en y indien:
1.2 $3x - y = 4$ en $x^2 + 2xy - y^2 = -2$
Gegee: $f(x) = x^2 + 8x + 16$
1.3.1 Los op vir x indien $f(x) > 0$ - NSC Mathematics - Question 1 - 2017 - Paper 1
Question 1
Los op vir x:
1.1.1 $x^2 + 9x + 14 = 0$
1.1.2 $4x^2 + 9x - 3 = 0$ (korrek tot TWEE decimal plekke)
1.1.3 $ ext{√}x^2 - 5 = 2 ext{√}x$
Los op vir x en y indie... show full transcript
Worked Solution & Example Answer:Los op vir x:
1.1.1 $x^2 + 9x + 14 = 0$
1.1.2 $4x^2 + 9x - 3 = 0$ (korrek tot TWEE decimal plekke)
1.1.3 $ ext{√}x^2 - 5 = 2 ext{√}x$
Los op vir x en y indien:
1.2 $3x - y = 4$ en $x^2 + 2xy - y^2 = -2$
Gegee: $f(x) = x^2 + 8x + 16$
1.3.1 Los op vir x indien $f(x) > 0$ - NSC Mathematics - Question 1 - 2017 - Paper 1
Step 1
1.1.1 $x^2 + 9x + 14 = 0$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve the quadratic equation, we can use the factoring method:
Write the equation in standard form:
x2+9x+14=0
Factor the equation:
(x+7)(x+2)=0
Set each factor to equal zero:
x+7=0 → x=−7
x+2=0 → x=−2
Thus, the solutions are x=−7 or x=−2.
Step 2
1.1.2 $4x^2 + 9x - 3 = 0$ (korrek tot TWEE decimal plekke)
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
For this quadratic equation, we can use the quadratic formula:
Apply the quadratic formula:
x=2a−b±b2−4ac
where a=4, b=9, and c=−3.
Substitute into the formula:
x=2⋅4−9±92−4⋅4⋅(−3)
Simplifying:
x=8−9±81+48=8−9±129
Calculate the values:
One solution will be approximately x=0.29 and the other x=−2.54.
Step 3
1.1.3 $ ext{√}x^2 - 5 = 2 ext{√}x$
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve this equation, follow these steps:
Rearrange the equation to isolate square roots:
ext√x2−2ext√x−5=0
Let y=ext√x, then:
y2−2y−5=0
Use the quadratic formula on this new equation:
y=2⋅12±(−2)2−4⋅1⋅(−5)=22±4+20=22±24
Therefore, y=1+6 or y=1−6 (only non-negative values matter for ext√x).
Since y=ext√x, we find:
Valid solution: x=(1+6)2
Invalid solution because it results in negative values when squaring: y=1−6<0.
Step 4
1.2 Los op vir x en y indien: $3x - y = 4$ en $x^2 + 2xy - y^2 = -2$
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve this system of equations:
From the first equation, express y in terms of x:
y=3x−4
Substitute this into the second equation:
x2+2x(3x−4)−(3x−4)2=−2
Simplifying:
x2+6x2−8x−(9x2−24x+16)=−2−2x2+16x−18=0
Factor or use the quadratic formula to solve for x, then substitute back to find y.
Step 5
1.3.1 Los op vir x indien $f(x) > 0$
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Given the function f(x)=x2+8x+16, we first rewrite it in a usable form:
Factor the quadratic:
f(x)=(x+4)2
Set (x+4)2>0. The expression is positive when:
Either x+4>0 or x+4<0 but squared leads to only positive scenarios.
Hence, the solution is for all x except x=−4.
Step 6
1.3.2 Vir watter waardes van p sal $f(y) = p$ TWEE ongelike negatiewe wortels hê?
97%
121 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the conditions for f(y)=p to have two unequal negative roots:
The discriminant must be positive and p<16:
64−4(16−p)>0
Rearranging gives:
0<p<16
Therefore, the values of p are in the range (0,16) that lead to two unequal negative roots.