Photo AI

Los op vir x: 1.1.1 $x^2 + 9x + 14 = 0$ 1.1.2 $4x^2 + 9x - 3 = 0$ (korrek tot TWEE decimal plekke) 1.1.3 $ ext{√}x^2 - 5 = 2 ext{√}x$ Los op vir x en y indien: 1.2 $3x - y = 4$ en $x^2 + 2xy - y^2 = -2$ Gegee: $f(x) = x^2 + 8x + 16$ 1.3.1 Los op vir x indien $f(x) > 0$ - NSC Mathematics - Question 1 - 2017 - Paper 1

Question icon

Question 1

Los-op-vir-x:--1.1.1--$x^2-+-9x-+-14-=-0$--1.1.2--$4x^2-+-9x---3-=-0$--(korrek-tot-TWEE-decimal-plekke)--1.1.3--$-ext{√}x^2---5-=-2-ext{√}x$--Los-op-vir-x-en-y-indien:--1.2--$3x---y-=-4$--en--$x^2-+-2xy---y^2-=--2$--Gegee:--$f(x)-=-x^2-+-8x-+-16$--1.3.1--Los-op-vir-x-indien--$f(x)->-0$-NSC Mathematics-Question 1-2017-Paper 1.png

Los op vir x: 1.1.1 $x^2 + 9x + 14 = 0$ 1.1.2 $4x^2 + 9x - 3 = 0$ (korrek tot TWEE decimal plekke) 1.1.3 $ ext{√}x^2 - 5 = 2 ext{√}x$ Los op vir x en y indie... show full transcript

Worked Solution & Example Answer:Los op vir x: 1.1.1 $x^2 + 9x + 14 = 0$ 1.1.2 $4x^2 + 9x - 3 = 0$ (korrek tot TWEE decimal plekke) 1.1.3 $ ext{√}x^2 - 5 = 2 ext{√}x$ Los op vir x en y indien: 1.2 $3x - y = 4$ en $x^2 + 2xy - y^2 = -2$ Gegee: $f(x) = x^2 + 8x + 16$ 1.3.1 Los op vir x indien $f(x) > 0$ - NSC Mathematics - Question 1 - 2017 - Paper 1

Step 1

1.1.1 $x^2 + 9x + 14 = 0$

96%

114 rated

Answer

To solve the quadratic equation, we can use the factoring method:

  1. Write the equation in standard form:

    x2+9x+14=0x^2 + 9x + 14 = 0

  2. Factor the equation:

    (x+7)(x+2)=0(x + 7)(x + 2) = 0

  3. Set each factor to equal zero:

    • x+7=0x + 7 = 0x=7x = -7
    • x+2=0x + 2 = 0x=2x = -2

Thus, the solutions are x=7x = -7 or x=2x = -2.

Step 2

1.1.2 $4x^2 + 9x - 3 = 0$ (korrek tot TWEE decimal plekke)

99%

104 rated

Answer

For this quadratic equation, we can use the quadratic formula:

  1. Apply the quadratic formula:

    x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

    where a=4a = 4, b=9b = 9, and c=3c = -3.

  2. Substitute into the formula:

    x=9±9244(3)24x = \frac{-9 \pm \sqrt{9^2 - 4 \cdot 4 \cdot (-3)}}{2 \cdot 4}

    Simplifying:

    x=9±81+488=9±1298x = \frac{-9 \pm \sqrt{81 + 48}}{8} = \frac{-9 \pm \sqrt{129}}{8}

  3. Calculate the values:

    One solution will be approximately x=0.29x = 0.29 and the other x=2.54x = -2.54.

Step 3

1.1.3 $ ext{√}x^2 - 5 = 2 ext{√}x$

96%

101 rated

Answer

To solve this equation, follow these steps:

  1. Rearrange the equation to isolate square roots:

    extx22extx5=0 ext{√}x^2 - 2 ext{√}x - 5 = 0

  2. Let y=extxy = ext{√}x, then:

    y22y5=0y^2 - 2y - 5 = 0

  3. Use the quadratic formula on this new equation:

    y=2±(2)241(5)21=2±4+202=2±242y = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-5)}}{2 \cdot 1} = \frac{2 \pm \sqrt{4 + 20}}{2} = \frac{2 \pm \sqrt{24}}{2}

  4. Therefore, y=1+6y = 1 + \sqrt{6} or y=16y = 1 - \sqrt{6} (only non-negative values matter for extx ext{√}x).

  5. Since y=extxy = ext{√}x, we find:

    • Valid solution: x=(1+6)2x = (1 + \sqrt{6})^2
    • Invalid solution because it results in negative values when squaring: y=16<0y = 1 - \sqrt{6} < 0.

Step 4

1.2 Los op vir x en y indien: $3x - y = 4$ en $x^2 + 2xy - y^2 = -2$

98%

120 rated

Answer

To solve this system of equations:

  1. From the first equation, express yy in terms of xx:

    y=3x4y = 3x - 4

  2. Substitute this into the second equation:

    x2+2x(3x4)(3x4)2=2x^2 + 2x(3x - 4) - (3x - 4)^2 = -2

  3. Simplifying:

    x2+6x28x(9x224x+16)=2x^2 + 6x^2 - 8x - (9x^2 - 24x + 16) = -2 2x2+16x18=0-2x^2 + 16x - 18 = 0

  4. Factor or use the quadratic formula to solve for xx, then substitute back to find yy.

Step 5

1.3.1 Los op vir x indien $f(x) > 0$

97%

117 rated

Answer

Given the function f(x)=x2+8x+16f(x) = x^2 + 8x + 16, we first rewrite it in a usable form:

  1. Factor the quadratic:

    f(x)=(x+4)2f(x) = (x + 4)^2

  2. Set (x+4)2>0(x + 4)^2 > 0. The expression is positive when:

    • Either x+4>0x + 4 > 0 or x+4<0x + 4 < 0 but squared leads to only positive scenarios.
  3. Hence, the solution is for all xx except x=4x = -4.

Step 6

1.3.2 Vir watter waardes van p sal $f(y) = p$ TWEE ongelike negatiewe wortels hê?

97%

121 rated

Answer

To find the conditions for f(y)=pf(y) = p to have two unequal negative roots:

  1. The discriminant must be positive and p<16p < 16:

    644(16p)>064 - 4(16 - p) > 0

  2. Rearranging gives:

    0<p<160 < p < 16

    Therefore, the values of pp are in the range (0,16)(0, 16) that lead to two unequal negative roots.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;