Photo AI

1.1 Los op vir $x$: 1.1.1 $x^2 - 4x + 3 = 0$ 1.1.2 $5x^2 - 5x + 1 = 0$ (korrek tot TWEE desimale plekke) 1.1.3 $x^2 - 3x - 10 > 0$ 1.1.4 $3 ad{x} = x - 4$ 1.2 Los gelijktijdig op vir $x$ en $y$: $3x - y = 2$ en $2y + 9x^2 = -1$ 1.3 Indien $3^x = 64$ en $5^{ rac{1}{ ad{y}}} = 64$, SONDERS die gebruik van 'n sakrekenaar, die waarde van: $$ rac{3^{ rac{1}{2}}}{ ad{5^y}}$$ - NSC Mathematics - Question 1 - 2018 - Paper 1

Question icon

Question 1

1.1-Los-op-vir-$x$:--1.1.1-$x^2---4x-+-3-=-0$---1.1.2-$5x^2---5x-+-1-=-0$-(korrek-tot-TWEE-desimale-plekke)---1.1.3-$x^2---3x---10->-0$---1.1.4-$3-ad{x}-=-x---4$--1.2-Los-gelijktijdig-op-vir-$x$-en-$y$:--$3x---y-=-2$-en-$2y-+-9x^2-=--1$--1.3-Indien-$3^x-=-64$-en-$5^{-rac{1}{-ad{y}}}-=-64$,-SONDERS-die-gebruik-van-'n-sakrekenaar,-die-waarde-van:-$$-rac{3^{-rac{1}{2}}}{-ad{5^y}}$$-NSC Mathematics-Question 1-2018-Paper 1.png

1.1 Los op vir $x$: 1.1.1 $x^2 - 4x + 3 = 0$ 1.1.2 $5x^2 - 5x + 1 = 0$ (korrek tot TWEE desimale plekke) 1.1.3 $x^2 - 3x - 10 > 0$ 1.1.4 $3 ad{x} = x - 4$ 1.... show full transcript

Worked Solution & Example Answer:1.1 Los op vir $x$: 1.1.1 $x^2 - 4x + 3 = 0$ 1.1.2 $5x^2 - 5x + 1 = 0$ (korrek tot TWEE desimale plekke) 1.1.3 $x^2 - 3x - 10 > 0$ 1.1.4 $3 ad{x} = x - 4$ 1.2 Los gelijktijdig op vir $x$ en $y$: $3x - y = 2$ en $2y + 9x^2 = -1$ 1.3 Indien $3^x = 64$ en $5^{ rac{1}{ ad{y}}} = 64$, SONDERS die gebruik van 'n sakrekenaar, die waarde van: $$ rac{3^{ rac{1}{2}}}{ ad{5^y}}$$ - NSC Mathematics - Question 1 - 2018 - Paper 1

Step 1

1.1.1 $x^2 - 4x + 3 = 0$

96%

114 rated

Answer

To solve the quadratic equation, we can factor it:

(x3)(x1)=0(x - 3)(x - 1) = 0

This gives us the solutions:
x=3x = 3 or x=1x = 1.

Step 2

1.1.2 $5x^2 - 5x + 1 = 0$ (korrek tot TWEE desimale plekke)

99%

104 rated

Answer

Using the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} where a=5a = 5, b=5b = -5, and c=1c = 1:

Calculate the discriminant: b24ac=(5)24(5)(1)=2520=5b^2 - 4ac = (-5)^2 - 4(5)(1) = 25 - 20 = 5 Then, x=5±510=12±510x = \frac{5 \pm \sqrt{5}}{10} = \frac{1}{2} \pm \frac{\sqrt{5}}{10} Calculating the values gives us: x0,72x \approx 0,72 and x0,28x \approx 0,28.

Step 3

1.1.3 $x^2 - 3x - 10 > 0$

96%

101 rated

Answer

To solve this inequality, first factor:
(x5)(x+2)>0(x - 5)(x + 2) > 0 Critical points are x=2x = -2 and x=5x = 5.
We analyze intervals:

  1. (,2)(-\infty, -2)
  2. (2,5)(-2, 5)
  3. (5,)(5, \infty)
    Evaluating these intervals gives: x<2 or x>5x < -2 \text{ or } x > 5

Step 4

1.1.4 $3\rad{x} = x - 4$

98%

120 rated

Answer

Squaring both sides gives: 9x=(x4)29x = (x - 4)^2 Expanding the right side: 9x=x28x+169x = x^2 - 8x + 16 Rearranging results in: x217x+16=0x^2 - 17x + 16 = 0 Factoring leads to the critical points: (x16)(x1)=0(x - 16)(x - 1) = 0 Thus, x=16x = 16 or x=1x = 1.

Step 5

1.2 Los gelijktijdig op vir $x$ en $y$: $3x - y = 2$ en $2y + 9x^2 = -1$

97%

117 rated

Answer

From the first equation, we can express yy in terms of xx: y=3x2y = 3x - 2 Substituting this in the second equation: 2(3x2)+9x2=12(3x - 2) + 9x^2 = -1 6x4+9x2=16x - 4 + 9x^2 = -1 Rearranging gives: 9x2+6x3=09x^2 + 6x - 3 = 0 Dividing through by 3: 3x2+2x1=03x^2 + 2x - 1 = 0 Factoring gives the solutions for xx:
x=13x = \frac{1}{3} or x=1x = -1.
Substituting these back: y=3(13)2=1 and y=3(1)2=5y = 3(\frac{1}{3}) - 2 = -1 \text{ and } y = 3(-1) - 2 = -5 So, (x,y)=(13,1)(x, y) = (\frac{1}{3}, -1) and (1,5)(-1, -5).

Step 6

1.3 Indien $3^x = 64$ en $5^{\frac{1}{\rad{y}}} = 64$, SONDERS die gebruik van 'n sakrekenaar, die waarde van: $$\frac{3^{\frac{1}{2}}}{\rad{5^y}}$$

97%

121 rated

Answer

First, solve 3x=643^x = 64:
Since 64=4364 = 4^3, we have: 3x=433^x = 4^3 Taking logarithms: x=3log(4)log(3)x = \frac{3 \log(4)}{\log(3)} Now for 51\rady=645^{\frac{1}{\rad{y}}} = 64:
1\rady=3    y=9\frac{1}{\rad{y}} = 3 \implies y = 9 Thus, substituting into the equation: 312\rad59=354.5\frac{3^{\frac{1}{2}}}{\rad{5^9}} = \frac{\sqrt{3}}{5^{4.5}}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;