1.1 Los op vir $x$:
1.1.1 $x^2 - 4x + 3 = 0$
1.1.2 $5x^2 - 5x + 1 = 0$ (korrek tot TWEE desimale plekke)
1.1.3 $x^2 - 3x - 10 > 0$
1.1.4 $3
ad{x} = x - 4$
1.2 Los gelijktijdig op vir $x$ en $y$:
$3x - y = 2$ en $2y + 9x^2 = -1$
1.3 Indien $3^x = 64$ en $5^{rac{1}{
ad{y}}} = 64$, SONDERS die gebruik van 'n sakrekenaar, die waarde van:
$$rac{3^{rac{1}{2}}}{
ad{5^y}}$$ - NSC Mathematics - Question 1 - 2018 - Paper 1
Question 1
1.1 Los op vir $x$:
1.1.1 $x^2 - 4x + 3 = 0$
1.1.2 $5x^2 - 5x + 1 = 0$ (korrek tot TWEE desimale plekke)
1.1.3 $x^2 - 3x - 10 > 0$
1.1.4 $3
ad{x} = x - 4$
1.... show full transcript
Worked Solution & Example Answer:1.1 Los op vir $x$:
1.1.1 $x^2 - 4x + 3 = 0$
1.1.2 $5x^2 - 5x + 1 = 0$ (korrek tot TWEE desimale plekke)
1.1.3 $x^2 - 3x - 10 > 0$
1.1.4 $3
ad{x} = x - 4$
1.2 Los gelijktijdig op vir $x$ en $y$:
$3x - y = 2$ en $2y + 9x^2 = -1$
1.3 Indien $3^x = 64$ en $5^{rac{1}{
ad{y}}} = 64$, SONDERS die gebruik van 'n sakrekenaar, die waarde van:
$$rac{3^{rac{1}{2}}}{
ad{5^y}}$$ - NSC Mathematics - Question 1 - 2018 - Paper 1
Step 1
1.1.1 $x^2 - 4x + 3 = 0$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve the quadratic equation, we can factor it:
(x−3)(x−1)=0
This gives us the solutions: x=3 or x=1.
Step 2
1.1.2 $5x^2 - 5x + 1 = 0$ (korrek tot TWEE desimale plekke)
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Using the quadratic formula:
x=2a−b±b2−4ac
where a=5, b=−5, and c=1:
Calculate the discriminant:
b2−4ac=(−5)2−4(5)(1)=25−20=5
Then,
x=105±5=21±105
Calculating the values gives us:
x≈0,72 and x≈0,28.
Step 3
1.1.3 $x^2 - 3x - 10 > 0$
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve this inequality, first factor: (x−5)(x+2)>0
Critical points are x=−2 and x=5.
We analyze intervals:
(−∞,−2)
(−2,5)
(5,∞)
Evaluating these intervals gives:
x<−2 or x>5
Step 4
1.1.4 $3\rad{x} = x - 4$
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Squaring both sides gives:
9x=(x−4)2
Expanding the right side:
9x=x2−8x+16
Rearranging results in:
x2−17x+16=0
Factoring leads to the critical points:
(x−16)(x−1)=0
Thus, x=16 or x=1.
Step 5
1.2 Los gelijktijdig op vir $x$ en $y$:
$3x - y = 2$ en $2y + 9x^2 = -1$
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
From the first equation, we can express y in terms of x:
y=3x−2
Substituting this in the second equation:
2(3x−2)+9x2=−16x−4+9x2=−1
Rearranging gives:
9x2+6x−3=0
Dividing through by 3:
3x2+2x−1=0
Factoring gives the solutions for x: x=31 or x=−1.
Substituting these back:
y=3(31)−2=−1 and y=3(−1)−2=−5
So, (x,y)=(31,−1) and (−1,−5).
Step 6
1.3 Indien $3^x = 64$ en $5^{\frac{1}{\rad{y}}} = 64$, SONDERS die gebruik van 'n sakrekenaar, die waarde van:
$$\frac{3^{\frac{1}{2}}}{\rad{5^y}}$$
97%
121 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
First, solve 3x=64:
Since 64=43, we have:
3x=43
Taking logarithms:
x=log(3)3log(4)
Now for 5\rady1=64: \rady1=3⟹y=9
Thus, substituting into the equation:
\rad59321=54.53