Photo AI

1.1 Solve for $x$: 1.1.1 $x^{2}+2x-15=0$ 1.1.2 $5x^{2}-x-9=0$ (Leave your answer correct to TWO decimal places.) 1.1.3 $x^{2} \\leq 3x$ 1.2 Given: $\frac{a + 64}{a} = 16$ 1.2.1 Solve for $a$ - NSC Mathematics - Question 1 - 2022 - Paper 1

Question icon

Question 1

1.1-Solve-for-$x$:--1.1.1-$x^{2}+2x-15=0$--1.1.2-$5x^{2}-x-9=0$-(Leave-your-answer-correct-to-TWO-decimal-places.)--1.1.3-$x^{2}-\\leq-3x$--1.2-Given:-$\frac{a-+-64}{a}-=-16$--1.2.1-Solve-for-$a$-NSC Mathematics-Question 1-2022-Paper 1.png

1.1 Solve for $x$: 1.1.1 $x^{2}+2x-15=0$ 1.1.2 $5x^{2}-x-9=0$ (Leave your answer correct to TWO decimal places.) 1.1.3 $x^{2} \\leq 3x$ 1.2 Given: $\frac{a + 64}... show full transcript

Worked Solution & Example Answer:1.1 Solve for $x$: 1.1.1 $x^{2}+2x-15=0$ 1.1.2 $5x^{2}-x-9=0$ (Leave your answer correct to TWO decimal places.) 1.1.3 $x^{2} \\leq 3x$ 1.2 Given: $\frac{a + 64}{a} = 16$ 1.2.1 Solve for $a$ - NSC Mathematics - Question 1 - 2022 - Paper 1

Step 1

1.1.1 $x^{2}+2x-15=0$

96%

114 rated

Answer

To solve the quadratic equation, we can factor it:

x2+2x15=(x+5)(x3)=0x^{2}+2x-15 = (x+5)(x-3) = 0

Setting each factor to zero gives: x+5=0    x=5x+5=0 \implies x=-5 x3=0    x=3x-3=0 \implies x=3

Thus, the solutions are x=5x=-5 or x=3x=3.

Step 2

1.1.2 $5x^{2}-x-9=0$ (Leave your answer correct to TWO decimal places.)

99%

104 rated

Answer

Using the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a}

For the equation, a=5a=5, b=1b=-1, c=9c=-9:

First, calculate the discriminant: b24ac=(1)245(9)=1+180=181b^{2}-4ac = (-1)^{2} - 4 \cdot 5 \cdot (-9) = 1 + 180 = 181

Now plug values into the formula:

x=(1)±18125=1±18110x = \frac{-(-1) \pm \sqrt{181}}{2 \cdot 5} = \frac{1 \pm \sqrt{181}}{10}

Calculating the roots gives:

x1+13.45101.45 (to 2 decimal places)x \approx \frac{1 + 13.45}{10} \approx 1.45\text{ (to 2 decimal places)} x113.45101.25x \approx \frac{1 - 13.45}{10} \approx -1.25

Step 3

1.1.3 $x^{2} \\leq 3x$

96%

101 rated

Answer

Rearrange the inequality:

x23x0x^{2} - 3x \leq 0

Factoring gives: (x)(x3)0(x)(x-3) \leq 0

Using a sign chart, the critical points are x=0x=0 and x=3x=3. Testing intervals, we find:

The solution to the inequality is: 0x30 \leq x \leq 3

Step 4

1.2.1 Solve for $a$.

98%

120 rated

Answer

Start with the equation:

a+64a=16\frac{a + 64}{a} = 16

Cross-multiply to eliminate the fraction:

a+64=16aa + 64 = 16a

Rearranging leads to: 64=15a    a=64154.2764 = 15a \implies a = \frac{64}{15} \approx 4.27

Step 5

1.2.2 Hence, solve for $x$: $2^{x} + 2^{6} = 16$

97%

117 rated

Answer

Simplify the equation:

Since 16=2416 = 2^{4}, we have:

2x+64=16    2x=1664=482^{x} + 64 = 16 \implies 2^{x} = 16 - 64 = -48

Since 2x2^{x} cannot be negative, we conclude that no solutions exist for this part.

Step 6

1.3 Without using a calculator, calculate the value of $$\sqrt{\frac{2^{1002}+2^{1006}}{17(2)^{99}}}$$

97%

121 rated

Answer

Factor out 210022^{1002} in the numerator:

=21002(1+24)17(2)99= \sqrt{\frac{2^{1002}(1 + 2^{4})}{17(2)^{99}}}

This simplifies to:

=210021717299    23=8=22= \sqrt{\frac{2^{1002} \cdot 17}{17 \cdot 2^{99}}} \implies \sqrt{2^{3}} = \sqrt{8} = 2\sqrt{2}

Step 7

1.4 Solve for $x$ and $y$ simultaneously:

96%

114 rated

Answer

We have the equations:

2xy=2(1)2x - y = 2 \\ (1) 1x3y=1(2)\frac{1}{x} - 3y = 1 \\ (2)

From (1), express yy in terms of xx: y=2x2y = 2x - 2

Substituting into (2): 1x3(2x2)=1\frac{1}{x} - 3(2x - 2) = 1

Simplify the equation to find: 1x6x+6=1    6x26x+1=0\frac{1}{x} - 6x + 6 = 1 \\ \implies 6x^{2} - 6x + 1 = 0

Using the quadratic formula to find xx, followed by substituting back to find yy.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;