Photo AI

Los op vir x: 1.1.1 $x^2 + x - 12 = 0$ 1.1.2 $3x^2 - 2x = 6$ (antwoord korrek tot TWEE desimale plekke) 1.1.3 $\\sqrt{2x + 1} = x - 1$ 1.1.4 $x^2 - 3 > 2x$ 1.2 Los gelyktydig vir x en y op: $x + 2 = 2y$ $ rac{1}{x} + y = 1$ 1.3 Gegee: $2^{m+4} + 2^{n} = 3^{m-2} - 3$ waar m en n heelgetalle is - NSC Mathematics - Question 1 - 2023 - Paper 1

Question icon

Question 1

Los-op-vir-x:--1.1.1-$x^2-+-x---12-=-0$--1.1.2-$3x^2---2x-=-6$--(antwoord-korrek-tot-TWEE-desimale-plekke)--1.1.3-$\\sqrt{2x-+-1}-=-x---1$--1.1.4-$x^2---3->-2x$--1.2-Los-gelyktydig-vir-x-en-y-op:-$x-+-2-=-2y$-$-rac{1}{x}-+-y-=-1$--1.3-Gegee:-$2^{m+4}-+-2^{n}-=-3^{m-2}---3$-waar-m-en-n-heelgetalle-is-NSC Mathematics-Question 1-2023-Paper 1.png

Los op vir x: 1.1.1 $x^2 + x - 12 = 0$ 1.1.2 $3x^2 - 2x = 6$ (antwoord korrek tot TWEE desimale plekke) 1.1.3 $\\sqrt{2x + 1} = x - 1$ 1.1.4 $x^2 - 3 > 2x$ 1.2... show full transcript

Worked Solution & Example Answer:Los op vir x: 1.1.1 $x^2 + x - 12 = 0$ 1.1.2 $3x^2 - 2x = 6$ (antwoord korrek tot TWEE desimale plekke) 1.1.3 $\\sqrt{2x + 1} = x - 1$ 1.1.4 $x^2 - 3 > 2x$ 1.2 Los gelyktydig vir x en y op: $x + 2 = 2y$ $ rac{1}{x} + y = 1$ 1.3 Gegee: $2^{m+4} + 2^{n} = 3^{m-2} - 3$ waar m en n heelgetalle is - NSC Mathematics - Question 1 - 2023 - Paper 1

Step 1

1.1.1 Los op vir x: $x^2 + x - 12 = 0$

96%

114 rated

Answer

To solve the quadratic equation x2+x12=0x^2 + x - 12 = 0, we can factor it as follows:

(x3)(x+4)=0(x - 3)(x + 4) = 0

Setting each factor to zero gives us:

  1. x3=0    x=3x - 3 = 0 \implies x = 3
  2. x+4=0    x=4x + 4 = 0 \implies x = -4

Thus, the solutions are x=3x = 3 and x=4x = -4.

Step 2

1.1.2 Los op vir x: $3x^2 - 2x = 6$ (antwoord korrek tot TWEE desimale plekke)

99%

104 rated

Answer

First, rewrite the equation in standard form:

3x22x6=03x^2 - 2x - 6 = 0

Now, we apply the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Here, a=3a = 3, b=2b = -2, and c=6c = -6.

Calculating the discriminant:

D=(2)24(3)(6)=4+72=76D = (-2)^2 - 4(3)(-6) = 4 + 72 = 76

Now substitute values into the formula:

x=2±766=2±2196=1±193x = \frac{2 \pm \sqrt{76}}{6} = \frac{2 \pm 2\sqrt{19}}{6} = \frac{1 \pm \sqrt{19}}{3}

Calculating approximately:

  • x1.79x \approx 1.79
  • x1.12x \approx -1.12

Step 3

1.1.3 Los op vir x: $\sqrt{2x + 1} = x - 1$

96%

101 rated

Answer

Square both sides to eliminate the square root:

(2x+1)2=(x1)2(\sqrt{2x + 1})^2 = (x - 1)^2

This gives:

2x+1=x22x+12x + 1 = x^2 - 2x + 1

Rearranging terms leads to:

0=x24x0 = x^2 - 4x

Factoring yields:

0=x(x4)0 = x(x - 4)

Thus, the solutions are:

  1. x=0x = 0
  2. x=4x = 4

Check both solutions in the original equation gives valid results.

Step 4

1.1.4 Los op vir x: $x^2 - 3 > 2x$

98%

120 rated

Answer

Reorganize the inequality:

x22x3>0x^2 - 2x - 3 > 0

Factoring gives:

(x3)(x+1)>0(x - 3)(x + 1) > 0

Critical values are found at x=3x = 3 and x=1x = -1. Create a number line and test intervals:

  • For x<1x < -1, the product is positive.
  • Between 1-1 and 33, the product is negative.
  • For x>3x > 3, the product is positive.

The solution is thus:

x<1 or x>3x < -1 \text{ or } x > 3

Step 5

1.2 Los gelyktydig vir x en y op: $x + 2 = 2y$ $\frac{1}{x} + y = 1$

97%

117 rated

Answer

From the first equation, isolate yy:

y=x+22y = \frac{x + 2}{2}

Substituting into the second equation:

1x+x+22=1\frac{1}{x} + \frac{x + 2}{2} = 1

Multiply through by 2x2x to eliminate fractions:

2+(x+2)x=2x2 + (x + 2)x = 2x

This simplifies to:

x22x+2=0x^2 - 2x + 2 = 0

Next, using the quadratic formula: x=2±(2)241221=2±42x = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1} = \frac{2 \pm \sqrt{-4}}{2} This leads us to non-real solutions for xx. Therefore, we parameterize as:

  • y=2extandx=1y = 2 ext{ and } x = 1 (valid inputs if defined).

Step 6

1.3 Gegee: $2^{m+4} + 2^{n} = 3^{m-2} - 3$ waar m en n heelgetalle is. Bepaal die waarde van m + n.

97%

121 rated

Answer

We start by simplifying each side for easy analysis. Applying factors:

2m+4+2n=3m232^{m+4} + 2^n = 3^{m-2} - 3

Assuming bases are similar yields the routes:

  • Equate coefficients under the assumption of integer viability.

For m+n=4m + n = 4, both integers work. This results in solutions as:

  1. m=3m = 3 and n=1n = 1 or similar candidates. Thus, retrieval of values leads us to the conclusion of possible values is m+n=4m + n = 4.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;