Photo AI

Solve for $x$: 1.1.1 $3x^2 + 10x + 6 = 0$ (correct to TWO decimal places) 1.1.2 $ ewline(6x^2 - 15 = x + 1)$ 1.1.3 $x^2 + 2x - 24 ewline 0$ - NSC Mathematics - Question 1 - 2017 - Paper 1

Question icon

Question 1

Solve-for-$x$:--1.1.1-$3x^2-+-10x-+-6-=-0$-(correct-to-TWO-decimal-places)--1.1.2-$-ewline(6x^2---15-=-x-+-1)$--1.1.3-$x^2-+-2x---24--ewline-0$-NSC Mathematics-Question 1-2017-Paper 1.png

Solve for $x$: 1.1.1 $3x^2 + 10x + 6 = 0$ (correct to TWO decimal places) 1.1.2 $ ewline(6x^2 - 15 = x + 1)$ 1.1.3 $x^2 + 2x - 24 ewline 0$

Worked Solution & Example Answer:Solve for $x$: 1.1.1 $3x^2 + 10x + 6 = 0$ (correct to TWO decimal places) 1.1.2 $ ewline(6x^2 - 15 = x + 1)$ 1.1.3 $x^2 + 2x - 24 ewline 0$ - NSC Mathematics - Question 1 - 2017 - Paper 1

Step 1

1.1.1: $3x^2 + 10x + 6 = 0$

96%

114 rated

Answer

To solve the equation 3x2+10x+6=03x^2 + 10x + 6 = 0, we will use the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Here, a=3a = 3, b=10b = 10, and c=6c = 6:

  1. Calculate the discriminant: b24ac=1024(3)(6)=10072=28b^2 - 4ac = 10^2 - 4(3)(6) = 100 - 72 = 28

  2. Now apply the quadratic formula: x=10±2823=10±276=5±73x = \frac{-10 \pm \sqrt{28}}{2 \cdot 3} = \frac{-10 \pm 2\sqrt{7}}{6} = \frac{-5 \pm \sqrt{7}}{3}

  3. Approximate the values:

    • First value: x2.55x \approx -2.55
    • Second value: x0.78x \approx -0.78

Thus, the solutions are x2.55x \approx -2.55 or x0.78x \approx -0.78.

Step 2

1.1.2: $\sqrt{6x^2 - 15} = x + 1$

99%

104 rated

Answer

To solve the equation 6x215=x+1\sqrt{6x^2 - 15} = x + 1, we square both sides:

  1. Squaring both sides gives: 6x215=(x+1)26x^2 - 15 = (x + 1)^2

  2. Expand the right side: 6x215=x2+2x+16x^2 - 15 = x^2 + 2x + 1

  3. Rearranging the equation: 5x22x16=05x^2 - 2x - 16 = 0

  4. Applying the quadratic formula again with a=5a = 5, b=2b = -2, and c=16c = -16: x=(2)±(2)24(5)(16)2(5)x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(5)(-16)}}{2(5)}

  5. Calculate the discriminant: 4+320=3244 + 320 = 324

  6. Hence: x=2±1810x = \frac{2 \pm 18}{10}

    • First value: x=2x = 2 (valid as eq1 eq -1)
    • Second value: x=1.6x = -1.6 (valid)

So the solutions are x=2x = 2 and x1.6x \approx -1.6.

Step 3

1.1.3: $x^2 + 2x - 24 \geq 0$

96%

101 rated

Answer

To solve the inequality x2+2x240x^2 + 2x - 24 \geq 0, we first find the roots of the boundary equation:

  1. Use the quadratic formula: x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

    Here, a=1a = 1, b=2b = 2, and c=24c = -24:

  2. Calculate the discriminant: 224(1)(24)=4+96=1002^2 - 4(1)(-24) = 4 + 96 = 100

  3. Apply the formula: x=2±102x = \frac{-2 \pm 10}{2}

  4. The roots are:

    • First root: x=4x = 4
    • Second root: x=6x = -6
  5. The critical points 6-6 and 44 divide the number line into intervals. Test intervals:

    • For x<6x < -6, let x=7x = -7: (7)2+2(7)24=491424>0(-7)^2 + 2(-7) - 24 = 49 - 14 - 24 > 0 (valid)
    • For 6<x<4-6 < x < 4, let x=0x = 0: 02+2(0)24<00^2 + 2(0) - 24 < 0 (invalid)
    • For x>4x > 4, let x=5x = 5: 52+2(5)24>05^2 + 2(5) - 24 > 0 (valid)
  6. Therefore, the solution for the inequality is: x6 or x4x \leq -6 \text{ or } x \geq 4

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;