First, substitute x in the second equation:
x2−2xy+3y2=4
Replacing x gives:
(2y+2)2−2(2y+2)y+3y2=4
Expanding yields:
4y2+8y+4−(4y2+4y)+3y2=4
Combine like terms:
3y2+4y+4−4=0⇒3y2+4y=0
Factoring gives:
y(3y+4)=0⇒y=0 or y=−34
Thus, with y=0, x=2(0)+2=2.
For y=−34:
i gives:
x=2(−34)+2=−38+2=3−2
Therefore, the pairs are (2,0) and (3−2,−34).