Photo AI

7.1 Bepaal f′(x) vanaf eerste beginsels indien f(x) = x² + x - NSC Mathematics - Question 7 - 2022 - Paper 1

Question icon

Question 7

7.1-Bepaal-f′(x)-vanaf-eerste-beginsels-indien-f(x)-=-x²-+-x-NSC Mathematics-Question 7-2022-Paper 1.png

7.1 Bepaal f′(x) vanaf eerste beginsels indien f(x) = x² + x. 7.2 Bepaal f′(x) indien f(x) = 2x³ - 3x² + 8x. 7.3 Die raaklyn aan g(x) = ax³ + bx² + c het 'n minimu... show full transcript

Worked Solution & Example Answer:7.1 Bepaal f′(x) vanaf eerste beginsels indien f(x) = x² + x - NSC Mathematics - Question 7 - 2022 - Paper 1

Step 1

Bepaal f′(x) vanaf eerste beginsels indien f(x) = x² + x.

96%

114 rated

Answer

To find the derivative f′(x) from first principles, we use the definition of a derivative:

f(x)=limh0f(x+h)f(x)hf′(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

Substituting the function: f(x)=limh0((x+h)2+(x+h))(x2+x)hf′(x) = \lim_{h \to 0} \frac{((x + h)² + (x + h)) - (x² + x)}{h}

Expanding the numerator: =limh0(x2+2xh+h2+x+h)(x2+x)h= \lim_{h \to 0} \frac{(x² + 2xh + h² + x + h) - (x² + x)}{h} =limh02xh+h2+hh= \lim_{h \to 0} \frac{2xh + h² + h}{h}

Factoring out h: =limh0(2x+h+1)= \lim_{h \to 0} (2x + h + 1)

As h approaches 0, we have: f(x)=2x+1f′(x) = 2x + 1

Step 2

Bepaal f′(x) indien f(x) = 2x³ - 3x² + 8x.

99%

104 rated

Answer

Using the power rule for differentiation: f(x)=3(2x2)2(3x)+8f′(x) = 3(2x²) - 2(3x) + 8

Calculating gives: f(x)=6x26x+8f′(x) = 6x² - 6x + 8

Step 3

Die raaklyn aan g(x) = ax³ + bx² + c het 'n minimum helling (gradiënt) by die punt (−1 ; −7).

96%

101 rated

Answer

To find where the graph is concave up, we need to analyze the second derivative.

First, we find the first derivative: g(x)=3ax2+2bxg′(x) = 3ax² + 2bx

Setting the first derivative to zero at the point (−1) for a minimum: g(1)=3a(1)2+2b(1)=03a2b=0g′(−1) = 3a(-1)² + 2b(-1) = 0 \Rightarrow 3a - 2b = 0

This simplifies to: b=32ab = \frac{3}{2}a

Next, for concavity: We need the second derivative: g′′(x)=6ax+2bg′′(x) = 6ax + 2b

For concave up, set: g′′(1)>06a(1)+2b>0g′′(−1) > 0 \Rightarrow 6a(-1) + 2b > 0

Substituting b: 6a+3a>03a>0a<0-6a + 3a > 0 \Rightarrow -3a > 0 \Rightarrow a < 0

Therefore, for values of x where g is concave up, we conclude: x>1x > -1

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;