Photo AI

7.1 Determine $f'(x)$ from first principles if $f(x)=2x^2-1$ - NSC Mathematics - Question 7 - 2020 - Paper 1

Question icon

Question 7

7.1-Determine-$f'(x)$-from-first-principles-if-$f(x)=2x^2-1$-NSC Mathematics-Question 7-2020-Paper 1.png

7.1 Determine $f'(x)$ from first principles if $f(x)=2x^2-1$. 7.2 Determine: 7.2.1 $\frac{d}{dx}(\sqrt{x^2+x^3})$ 7.2.2 $f'(x)$ if $f(x)=\frac{4x^2-9}{4x+6}; \... show full transcript

Worked Solution & Example Answer:7.1 Determine $f'(x)$ from first principles if $f(x)=2x^2-1$ - NSC Mathematics - Question 7 - 2020 - Paper 1

Step 1

Determine $f'(x)$ from first principles if $f(x)=2x^2-1$

96%

114 rated

Answer

To find f(x)f'(x) from first principles, we use the definition of the derivative:

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}

Starting with f(x)=2x21f(x) = 2x^2 - 1, we first calculate f(x+h)f(x + h):

f(x+h)=2(x+h)21=2(x2+2xh+h2)1=2x2+4xh+2h21f(x+h) = 2(x+h)^2 - 1 = 2(x^2 + 2xh + h^2) - 1 = 2x^2 + 4xh + 2h^2 - 1

Now we substitute into the limit:

f(x)=limh0(2x2+4xh+2h21)(2x21)hf'(x) = \lim_{h \to 0} \frac{(2x^2 + 4xh + 2h^2 - 1) - (2x^2 - 1)}{h}

This simplifies to:

f(x)=limh04xh+2h2h=limh0(4x+2h)f'(x) = \lim_{h \to 0} \frac{4xh + 2h^2}{h} = \lim_{h \to 0} (4x + 2h)

Evaluating the limit as hh approaches 0 gives:

f(x)=4xf'(x) = 4x

Step 2

Determine: $\frac{d}{dx}(\sqrt{x^2 + x^3})$

99%

104 rated

Answer

To differentiate y=x2+x3y = \sqrt{x^2 + x^3}, we apply the chain rule:

dydx=12x2+x3ddx(x2+x3)\frac{dy}{dx} = \frac{1}{2\sqrt{x^2 + x^3}} \cdot \frac{d}{dx}(x^2 + x^3)

Calculating the derivative of the inside:

ddx(x2+x3)=2x+3x2\frac{d}{dx}(x^2 + x^3) = 2x + 3x^2

Therefore:

dydx=12x2+x3(2x+3x2)=2x+3x22x2+x3\frac{dy}{dx} = \frac{1}{2\sqrt{x^2 + x^3}} (2x + 3x^2) = \frac{2x + 3x^2}{2\sqrt{x^2 + x^3}}

Step 3

Determine: $f'(x)$ if $f(x)=\frac{4x^2-9}{4x+6}; \quad x=\frac{3}{2}$

96%

101 rated

Answer

To differentiate f(x)=4x294x+6f(x) = \frac{4x^2 - 9}{4x + 6}, we use the quotient rule:

f(x)=(g(x)f(x)f(x)g(x))(g(x))2f'(x) = \frac{(g(x)f'(x) - f(x)g'(x))}{(g(x))^2}

where f(x)=4x29f(x) = 4x^2 - 9 and g(x)=4x+6g(x) = 4x + 6. Therefore:

  • f(x)=8xf'(x) = 8x
  • g(x)=4g'(x) = 4

Now substituting into the quotient rule:

f(x)=(4x+6)(8x)(4x29)(4)(4x+6)2f'(x) = \frac{(4x + 6)(8x) - (4x^2 - 9)(4)}{(4x + 6)^2}

We evaluate this at x=32x = \frac{3}{2}:

f(32)=1f'\left(\frac{3}{2}\right) = 1

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;