Photo AI

8.1 Determine $f'(x)$ from first principles if it is given that $f(x) = -x^2$ - NSC Mathematics - Question 8 - 2022 - Paper 1

Question icon

Question 8

8.1-Determine-$f'(x)$-from-first-principles-if-it-is-given-that-$f(x)-=--x^2$-NSC Mathematics-Question 8-2022-Paper 1.png

8.1 Determine $f'(x)$ from first principles if it is given that $f(x) = -x^2$. 8.2 Determine: 8.2.1 $f'(x)$, if it is given that $f(x) = 4x^3 - 5x^2$ 8.2.2 $D_... show full transcript

Worked Solution & Example Answer:8.1 Determine $f'(x)$ from first principles if it is given that $f(x) = -x^2$ - NSC Mathematics - Question 8 - 2022 - Paper 1

Step 1

Determine $f'(x)$ from first principles if it is given that $f(x) = -x^2$

96%

114 rated

Answer

To find the derivative f(x)f'(x) from first principles, we use the definition:

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}

  1. Substitute f(x)=x2f(x) = -x^2:

    f(x+h)=(x+h)2=x22xhh2f(x+h) = -(x+h)^2 = -x^2 - 2xh - h^2

  2. Plug into the formula:

    f(x)=limh0x22xhh2+x2hf'(x) = \lim_{h \to 0} \frac{-x^2 - 2xh - h^2 + x^2}{h}

  3. Simplify:

    f(x)=limh02xhh2h=limh0(2xh)f'(x) = \lim_{h \to 0} \frac{-2xh - h^2}{h} = \lim_{h \to 0} (-2x - h)

  4. Evaluate the limit:

    f(x)=2xf'(x) = -2x

Step 2

Determine: 8.2.1 $f'(x)$, if it is given that $f(x) = 4x^3 - 5x^2$

99%

104 rated

Answer

Using the power rule:

f(x)=ddx(4x3)ddx(5x2)f'(x) = \frac{d}{dx}(4x^3) - \frac{d}{dx}(5x^2)

  1. Differentiate:

    f(x)=12x210xf'(x) = 12x^2 - 10x

Step 3

Determine: 8.2.2 $D_x \left[ -\frac{6\sqrt{x}+2}{x^4} \right]$

96%

101 rated

Answer

To find the derivative, we use the quotient rule: Dx[uv]=uvuvv2D_x \left[ \frac{u}{v} \right] = \frac{u'v - uv'}{v^2} Where:

  • u=6x+2u = -6\sqrt{x} + 2, hence u=3xu' = -\frac{3}{\sqrt{x}}
  • v=x4v = x^4, hence v=4x3v' = 4x^3

Now applying the quotient rule:

Dx[6x+2x4]=(3x)x4(6x+2)(4x3)(x4)2D_x \left[ -\frac{6\sqrt{x}+2}{x^4} \right] = \frac{(-\frac{3}{\sqrt{x}})x^4 - (-6\sqrt{x}+2)(4x^3)}{(x^4)^2}

Simplifying this gives:

=22x3/28x3x8=22x3/28x3x8= \frac{22x^{3/2} - 8x^3}{x^8} = \frac{22x^{3/2} - 8x^3}{x^8}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;