Bepaal $f(x)$ vanuit eerste beginsels as $f(x) = -x^2 + 4$ - NSC Mathematics - Question 8 - 2016 - Paper 1
Question 8
Bepaal $f(x)$ vanuit eerste beginsels as $f(x) = -x^2 + 4$.
Bepaal die afgelei van:
8.2.1 $y = 3x^2 + 10x$
8.2.2 $f(x) = (x - 3)^2$
Gegee: $f(x) = 2x^3 - 23x^2 +... show full transcript
Worked Solution & Example Answer:Bepaal $f(x)$ vanuit eerste beginsels as $f(x) = -x^2 + 4$ - NSC Mathematics - Question 8 - 2016 - Paper 1
Step 1
Bepaal $f(x)$ vanuit eerste beginsels as $f(x) = -x^2 + 4$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Om f(x) vanuit die eerste beginsels te bepaal, gebruik ons die limietvolgorde:
f'(x) = rac{f(x+h) - f(x)}{h}
Die funksie f(x)=−x2+4 impliseer dat ons f(x+h)=−(x+h)2+4 kan skryf! Wanneer ons die limiet neem:
Bereken f(x+h):
f(x+h)=−((x+h)2)+4=−x2−2xh−h2+4
Substitueer in die limiet:
f'(x) = rac{-x^2 - 2xh - h^2 + 4 + x^2 - 4}{h}
Vereenvoudig:
f'(x) = rac{-2xh - h^2}{h} = -2x - h
Neem die limiet as h na 0 gaan:
f′(x)=−2x
Step 2
Bepaal die afgelei van 8.2.1 y = 3x^2 + 10x
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Om die afgeleide te bereken:
y′=6x+10.
Step 3
Bepaal die afgelei van 8.2.2 f(x) = (x - 3)^2
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Die afgeleide van f(x) is gegee deur:
f′(x)=2(x−3)(1)=2(x−3).
Step 4
Bepaal die $x$-koordinaat van die draaipunte van f$
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Om die draaipunte te vind, stel f′(x)=0:
ightarrow x^2 - 19x + 42 = 0$$
Die oplossings is $x = 8/3$ en $x = 5$.
Step 5
Skets die grafiek van f en benom ALLE draaipunte en snypunte met die as duidelik.
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Die grafiek van die funksie f(x) moet die intercepts en draaipunte duidelik weergee. Die snypunte met die x-as en y-as moet duidelik gemerk wees, sowel as die draaipunte op x=8/3 en x=5.
Step 6
Bepaal die koördinate van die $y$-afsnit van die raakylyn aan $f$ wat 'n helling van 40 het en wat raak by 'n punt waar die $x$-koordinaat 'n heelgetal is.
97%
121 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Die helling m=40 impliseer die volgende:
y=mx+cy=40x+c
By die punt waar dit raak, moet f(x)=−25 wees: