Photo AI

7.1 Given: f(x) = 2x^2 - x Determine f'(x) from first principles - NSC Mathematics - Question 7 - 2017 - Paper 1

Question icon

Question 7

7.1-Given:--f(x)-=-2x^2---x--Determine--f'(x)--from-first-principles-NSC Mathematics-Question 7-2017-Paper 1.png

7.1 Given: f(x) = 2x^2 - x Determine f'(x) from first principles. 7.2 Determine : 7.2.1 D_x[(x+1)(3x-7)] 7.2.2 dy/dx if y = √(x - 5) * (1/x) * (1/2π... show full transcript

Worked Solution & Example Answer:7.1 Given: f(x) = 2x^2 - x Determine f'(x) from first principles - NSC Mathematics - Question 7 - 2017 - Paper 1

Step 1

Determine f'(x) from first principles.

96%

114 rated

Answer

To find the derivative of the function from first principles, we use the limit definition:

f(x)=extlimho0f(x+h)f(x)hf'(x) = ext{lim}_{h o 0} \frac{f(x+h) - f(x)}{h}

  1. Compute f(x + h): f(x+h)=2(x+h)2(x+h)f(x + h) = 2(x + h)^2 - (x + h)

  2. Expand: f(x+h)=2(x2+2xh+h2)xh=2x2+4xh+2h2xhf(x + h) = 2(x^2 + 2xh + h^2) - x - h = 2x^2 + 4xh + 2h^2 - x - h

  3. Substitute into the limit: f(x)=limh0(2x2+4xh+2h2xh)(2x2x)hf'(x) = \lim_{h \to 0} \frac{(2x^2 + 4xh + 2h^2 - x - h) - (2x^2 - x)}{h}

  4. Simplify: f(x)=limh04xh+2h2hh=limh0(4x+2h1)f'(x) = \lim_{h \to 0} \frac{4xh + 2h^2 - h}{h} = \lim_{h \to 0} (4x + 2h - 1)

  5. Evaluate the limit: f(x)=4x1f'(x) = 4x - 1

Step 2

D_x[(x+1)(3x-7)]

99%

104 rated

Answer

To differentiate the product of two functions, we apply the product rule:

Dx[uv]=uv+uvD_x[uv] = u'v + uv'

Let:

  • u = (x + 1) → u' = 1
  • v = (3x - 7) → v' = 3

Now applying the product rule: Dx[(x+1)(3x7)]=(1)(3x7)+(x+1)(3)D_x[(x + 1)(3x - 7)] = (1)(3x - 7) + (x + 1)(3)

Which simplifies to: Dx[(x+1)(3x7)]=3x7+3x+3=6x4D_x[(x + 1)(3x - 7)] = 3x - 7 + 3x + 3 = 6x - 4

Step 3

dy/dx if y = √(x - 5) * (1/x) * (1/2π)

96%

101 rated

Answer

To find the derivative of the given function, we first express it clearly:

y=x5x12πy = \frac{\sqrt{x - 5}}{x} \cdot \frac{1}{2\pi}

Using the quotient rule for differentiation:

dydx=(uvuv)v2\frac{dy}{dx} = \frac{(u'v - uv')}{v^2}

Let:

  • u = √(x - 5) → u' = \frac{1}{2\sqrt{x - 5}}
  • v = x → v' = 1

Now substituting into the quotient rule: dydx=(12x5xx51)x212π\frac{dy}{dx} = \frac{\left(\frac{1}{2\sqrt{x - 5}} \cdot x - \sqrt{x - 5} \cdot 1\right)}{x^2} \cdot \frac{1}{2\pi}

This gives: dydx=12πx2x52x2x5\frac{dy}{dx} = \frac{1}{2\pi}\cdot \frac{x - 2\sqrt{x - 5}}{2x^2\sqrt{x - 5}}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;