Photo AI

8.1 Given: $f(x) = -2x^2 + p$ Determine $f'(x)$ from first principles - NSC Mathematics - Question 8 - 2017 - Paper 1

Question icon

Question 8

8.1-Given:-$f(x)-=--2x^2-+-p$--Determine-$f'(x)$-from-first-principles-NSC Mathematics-Question 8-2017-Paper 1.png

8.1 Given: $f(x) = -2x^2 + p$ Determine $f'(x)$ from first principles. 8.2 Determine: $D_x \left[ 4\sqrt{x} + \frac{1}{3x^2} + 2 \right]$

Worked Solution & Example Answer:8.1 Given: $f(x) = -2x^2 + p$ Determine $f'(x)$ from first principles - NSC Mathematics - Question 8 - 2017 - Paper 1

Step 1

8.1 Determine $f'(x)$ from first principles.

96%

114 rated

Answer

To determine the derivative f(x)f'(x) from first principles, we use the definition of the derivative:

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

  1. Substitute f(x)f(x) into the formula: f(x)=limh0(2(x+h)2+p)(2x2+p)hf'(x) = \lim_{h \to 0} \frac{(-2(x + h)^2 + p) - (-2x^2 + p)}{h}
  2. Expand (2(x+h)2+p)(-2(x + h)^2 + p): (2(x2+2xh+h2)+p)(2x2+p)(-2(x^2 + 2xh + h^2) + p) - (-2x^2 + p)
  3. Simplifying results in: =limh0(2x24xh2h2+p)(2x2+p)h= \lim_{h \to 0} \frac{(-2x^2 - 4xh - 2h^2 + p) - (-2x^2 + p)}{h} =limh04xh2h2h= \lim_{h \to 0} \frac{-4xh - 2h^2}{h}
  4. Factor out hh to simplify: =limh0(4x2h)= \lim_{h \to 0} (-4x - 2h)
  5. As hh approaches zero, the limit becomes: f(x)=4xf'(x) = -4x

Step 2

8.2 Determine: $D_x \left[ 4\sqrt{x} + \frac{1}{3x^2} + 2 \right]$

99%

104 rated

Answer

To find the derivative of the function Dx[4x+13x2+2]D_x \left[ 4\sqrt{x} + \frac{1}{3x^2} + 2 \right], we will differentiate each term separately:

  1. Derivative of 4x4\sqrt{x}: Dx[4x]=412x=2xD_x[4\sqrt{x}] = 4 \cdot \frac{1}{2\sqrt{x}} = \frac{2}{\sqrt{x}}

  2. Derivative of 13x2\frac{1}{3x^2}: Dx[13x2]=23x3D_x\left[\frac{1}{3x^2}\right] = -\frac{2}{3x^3}

  3. Derivative of the constant 22 is 00.

  4. Combining these results, we get: Dx[4x+13x2+2]=2x23x3D_x \left[ 4\sqrt{x} + \frac{1}{3x^2} + 2 \right] = \frac{2}{\sqrt{x}} - \frac{2}{3x^3}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;