Photo AI

Die grafiek van $h(x)=ax^3+bx^2$ is gesketst - NSC Mathematics - Question 10 - 2021 - Paper 1

Question icon

Question 10

Die-grafiek-van-$h(x)=ax^3+bx^2$-is-gesketst-NSC Mathematics-Question 10-2021-Paper 1.png

Die grafiek van $h(x)=ax^3+bx^2$ is gesketst. Die grafiek het draainpunt by die oorsprong, $O(0; 0)$ en $B(4; 32)$. A is 'n $x$-afsnit van $h$. 10.1 Toon dat ... show full transcript

Worked Solution & Example Answer:Die grafiek van $h(x)=ax^3+bx^2$ is gesketst - NSC Mathematics - Question 10 - 2021 - Paper 1

Step 1

Toon dat $a=-1$ en $b=6$

96%

114 rated

Answer

We begin by computing the first derivative of the function to find critical points.
Given:
h(x)=3ax2+2bxh'(x) = 3ax^2 + 2bx
Substituting x=4x = 4 where h(4)=32h(4) = 32:
h(4)=64a+16b=32h(4) = 64a + 16b = 32
Next, substituting into our equation gives us:
4a+b=2 ext(1)4a + b = 2 \ ext{ (1)}
Using the first derivative for h(4)h'(4) and solving:

3a(4^2) + 2b(4) = 0 \ 48a + 8b = 0\ ext{ (2)}$$ Solving equations (1) and (2) simultaneously: From (1), rearranging gives $b = 2 - 4a$. Substituting this into (2): $$48a + 8(2 - 4a) = 0 \ 48a + 16 - 32a = 0 \ 16a = -16 \ a = -1 \ $$ By substituting back we find: $$b = 2 - 4(-1) = 6.$$

Step 2

Bereken die koördinate van A.

99%

104 rated

Answer

To find the coordinates of point A where x=0x = 0, we substitute x=0x = 0 into the function:
h(0)=a(0)3+b(0)2=0.h(0) = a(0)^3 + b(0)^2 = 0.
Therefore, the coordinates of A are (0,0)(0, 0).

Step 3

Skryf die waarde van $x$ neer waarvoor: h' is 0.

96%

101 rated

Answer

The critical values occur when h=0h' = 0:
0=3(1)x2+2(6)x0 = 3(-1)x^2 + 2(6)x
This simplifies to:

x(12 - 3x) = 0$$ Thus, the values of $x$ are $x = 0$ and $x = 4$.

Step 4

Konkafiteit is +.

98%

120 rated

Answer

The concavity is determined by the second derivative:
h(x)=6ax+2b.h''(x) = 6ax + 2b.
Substituting in our values for aa and bb:
h(x)=6(1)x+12.h''(x) = 6(-1)x + 12.
Set h(x)>0h''(x) > 0 for concavity to be positive:

-6x + 12 > 0 \ x < 2.$$ Therefore, $0 ext{ up to } 2$ is where concavity is positive.

Step 5

Vir watter waarde$s$ van $k$ sal $-(x-1)^3 + 6(x-1)^2 - k = 0$ een negatief en twee verskillende positiewe wortels hê?

97%

117 rated

Answer

To analyze the cubic equation, we can utilize Descartes' Rule of Signs for root counting.
We are interested in (x1)3+6(x1)2k=0-(x-1)^3 + 6(x-1)^2 - k = 0.
For a cubic function to have one negative and two positive roots, the discriminant must be positive. The condition for two distinct positive roots is met when k<32k < 32.
Thus, the values of kk must be such that:
k<32.k < 32.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;