Photo AI

10.1 Die grafiek van $f(x) = ax^3 + bx^2 + cx + d$ het twee draai punte - NSC Mathematics - Question 10 - 2021 - Paper 1

Question icon

Question 10

10.1-Die-grafiek-van-$f(x)-=-ax^3-+-bx^2-+-cx-+-d$-het-twee-draai-punte-NSC Mathematics-Question 10-2021-Paper 1.png

10.1 Die grafiek van $f(x) = ax^3 + bx^2 + cx + d$ het twee draai punte. Die volgende inligting oor $f$ word ook gegee: - $f(2) = 0$ - Die $x$-as is 'n raaklyn aan... show full transcript

Worked Solution & Example Answer:10.1 Die grafiek van $f(x) = ax^3 + bx^2 + cx + d$ het twee draai punte - NSC Mathematics - Question 10 - 2021 - Paper 1

Step 1

10.2.1 Bewys dat die area van die geskatteerde gebied gegee word deur:

96%

114 rated

Answer

To find the area of the shaded segment in the semicircle defined by the coordinates given, we use the formula for the area of a segment of a circle. The area, AsegmentA_{segment}, of the segment can be calculated by subtracting the area of triangle ABO from the area of the sector:

  1. Area of sector AOBAOB: Areasector=14π(xx2)2Area_{sector} = \frac{1}{4} \pi (x-x^2)^2

  2. Area of triangle ABOABO: Areatriangle=12(x2x)Area_{triangle} = \frac{1}{2} (x^2-x)

Therefore, the area of the shaded region is given by: Areashaded=AreasectorAreatriangle=14π(xx2)212(x2x)Area_{shaded} = Area_{sector} - Area_{triangle} = \frac{1}{4} \pi (x-x^2)^2 - \frac{1}{2} (x^2 - x)

Step 2

10.2.2 Bewys dat die area van die geskatteerde gebied gegee word deur:

99%

104 rated

Answer

We continue the process of calculating area using integration. Given the function defined in segment 10.2.1, we derive the expression capturing the area of the shaded region:

A=π24(4x26x2+2x)A = \frac{\pi - 2}{4} (4x^2 - 6x^2 + 2x)

By factoring and simplifying, we can determine critical points for the area calculations. After identification of the area component from 0 to 1, we evaluate:

  • If x=0x=0 or x=1x=1, the area would yield zero.
  • For ff', when x=2x=2, compute: f(2)=4(46+2)f'(2) = 4(4 - 6 + 2) which helps confirm the existence of shaded regions, reinforcing our understanding about the area geometrically.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;