Photo AI

8.1 Bepaal $f'(x)$ vanuit eerste beginsels indien dit gegee word dat $f(x) = x^2 - 5$ - NSC Mathematics - Question 8 - 2018 - Paper 1

Question icon

Question 8

8.1-Bepaal-$f'(x)$-vanuit-eerste-beginsels-indien-dit-gegee-word-dat-$f(x)-=-x^2---5$-NSC Mathematics-Question 8-2018-Paper 1.png

8.1 Bepaal $f'(x)$ vanuit eerste beginsels indien dit gegee word dat $f(x) = x^2 - 5$. 8.2 Bepaal $ rac{dy}{dx}$ indien: 8.2.1 $y = 3x^3 + 6x^2 + x - 4$ 8.2.2 $yx... show full transcript

Worked Solution & Example Answer:8.1 Bepaal $f'(x)$ vanuit eerste beginsels indien dit gegee word dat $f(x) = x^2 - 5$ - NSC Mathematics - Question 8 - 2018 - Paper 1

Step 1

Bepaal $f'(x)$ vanuit eerste beginsels indien dit gegee word dat $f(x) = x^2 - 5$

96%

114 rated

Answer

To determine the derivative from first principles, we start with the definition:

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}

Given that f(x)=x25f(x) = x^2 - 5:

  1. Calculate f(x+h)f(x+h): f(x+h)=(x+h)25=x2+2xh+h25f(x+h) = (x+h)^2 - 5 = x^2 + 2xh + h^2 - 5

  2. Subtract f(x)f(x) from f(x+h)f(x+h): f(x+h)f(x)=(x2+2xh+h25)(x25)=2xh+h2f(x+h) - f(x) = (x^2 + 2xh + h^2 - 5) - (x^2 - 5) = 2xh + h^2

  3. Substitute this back into the limit: f(x)=limh02xh+h2hf'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h}

  4. Simplify: =limh0(2x+h)= \lim_{h \to 0} (2x + h) =2x= 2x

Step 2

Bepaal $\frac{dy}{dx}$ indien: $y = 3x^3 + 6x^2 + x - 4$

99%

104 rated

Answer

To find rac{dy}{dx}, we differentiate yy with respect to xx:

  1. Differentiate each term:

    • The derivative of 3x33x^3 is 9x29x^2.
    • The derivative of 6x26x^2 is 12x12x.
    • The derivative of xx is 11.
    • The derivative of 4-4 is 00.
  2. Combine the derivatives: dydx=9x2+12x+1\frac{dy}{dx} = 9x^2 + 12x + 1

Step 3

Bepaal $\frac{dy}{dx}$ indien: $yx - y = 2x^2 - 2x$ ; $x \neq 1$

96%

101 rated

Answer

We start with the equation:

yxy=2x22xyx - y = 2x^2 - 2x

  1. Factor the left side: y(x1)=2x22xy(x-1) = 2x^2 - 2x

  2. Divide by (x1)(x-1) (noting x1x \neq 1): y=2x22xx1y = \frac{2x^2 - 2x}{x-1}

  3. Differentiate using the quotient rule: dydx=(4x2)(x1)(2x22x)(1)(x1)2\frac{dy}{dx} = \frac{(4x - 2)(x-1) - (2x^2 - 2x)(1)}{(x-1)^2}

  4. Simplify:

    • First, calculate the numerator: =(4x2)(x1)(2x22x)= (4x - 2)(x - 1) - (2x^2 - 2x) =4x24x2x+22x2+2x= 4x^2 - 4x - 2x + 2 - 2x^2 + 2x =2x24x+2= 2x^2 - 4x + 2
  5. The final derivative: dydx=2x24x+2(x1)2\frac{dy}{dx} = \frac{2x^2 - 4x + 2}{(x-1)^2}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;