SimpleStudy Schools Book a Demo We can give expert advice on our plans and what will be the best option for your school.
Parents Pricing Home NSC Mathematics Calculus Bepaal $f'(x)$ vanuit eerste beginsels as gegee word dat $f(x) = 2x^2 - 3x$
Bepaal $f'(x)$ vanuit eerste beginsels as gegee word dat $f(x) = 2x^2 - 3x$ - NSC Mathematics - Question 9 - 2021 - Paper 1 Question 9
View full question Bepaal $f'(x)$ vanuit eerste beginsels as gegee word dat $f(x) = 2x^2 - 3x$.
9.2 Bepaal:
9.2.1 $\frac{dy}{dx}$ as $y = 4x^4 - 6x^3 + 3x$
9.2.2 $D_x\le... show full transcript
View marking scheme Worked Solution & Example Answer:Bepaal $f'(x)$ vanuit eerste beginsels as gegee word dat $f(x) = 2x^2 - 3x$ - NSC Mathematics - Question 9 - 2021 - Paper 1
Bepaal $f'(x)$ vanuit eerste beginsels as gegee word dat $f(x) = 2x^2 - 3x$ Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find the derivative from first principles, we use the definition of the derivative:
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} f ′ ( x ) = lim h → 0 h f ( x + h ) − f ( x )
Substitute the function into the formula:
First, calculate f ( x + h ) f(x + h) f ( x + h ) :
f ( x + h ) = 2 ( x + h ) 2 − 3 ( x + h ) f(x + h) = 2(x + h)^2 - 3(x + h) f ( x + h ) = 2 ( x + h ) 2 − 3 ( x + h )
Expanding gives:
f ( x + h ) = 2 ( x 2 + 2 x h + h 2 ) − 3 x − 3 h f(x + h) = 2(x^2 + 2xh + h^2) - 3x - 3h f ( x + h ) = 2 ( x 2 + 2 x h + h 2 ) − 3 x − 3 h
= 2 x 2 + 4 x h + 2 h 2 − 3 x − 3 h = 2x^2 + 4xh + 2h^2 - 3x - 3h = 2 x 2 + 4 x h + 2 h 2 − 3 x − 3 h
Now calculate f ( x + h ) − f ( x ) f(x + h) - f(x) f ( x + h ) − f ( x ) :
f ( x + h ) − f ( x ) = ( 2 x 2 + 4 x h + 2 h 2 − 3 x − 3 h ) − ( 2 x 2 − 3 x ) f(x + h) - f(x) = (2x^2 + 4xh + 2h^2 - 3x - 3h) - (2x^2 - 3x) f ( x + h ) − f ( x ) = ( 2 x 2 + 4 x h + 2 h 2 − 3 x − 3 h ) − ( 2 x 2 − 3 x )
= 4 x h + 2 h 2 − 3 h = 4xh + 2h^2 - 3h = 4 x h + 2 h 2 − 3 h
Now place into the limit formula:
f ′ ( x ) = lim h → 0 4 x h + 2 h 2 − 3 h h f'(x) = \lim_{h \to 0} \frac{4xh + 2h^2 - 3h}{h} f ′ ( x ) = lim h → 0 h 4 x h + 2 h 2 − 3 h
= lim h → 0 ( 4 x + 2 h − 3 ) = \lim_{h \to 0} (4x + 2h - 3) = lim h → 0 ( 4 x + 2 h − 3 )
Evaluate the limit as h h h approaches 0:
f ′ ( x ) = 4 x − 3 f'(x) = 4x - 3 f ′ ( x ) = 4 x − 3
Bepaal: $\frac{dy}{dx}$ as $y = 4x^4 - 6x^3 + 3x$ Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find \frac{dy}{dx}$$, we differentiate the function with respect to x$:
d y d x = d d x ( 4 x 4 − 6 x 3 + 3 x ) \frac{dy}{dx} = \frac{d}{dx}(4x^4 - 6x^3 + 3x) d x d y = d x d ( 4 x 4 − 6 x 3 + 3 x )
Using the power rule, we get:
Differentiate 4 x 4 4x^4 4 x 4 : [4 \cdot 4x^{4-1} = 16x^3]
Differentiate − 6 x 3 -6x^3 − 6 x 3 : [-6 \cdot 3x^{3-1} = -18x^2]
Differentiate 3 x 3x 3 x : [3 \cdot 1 = 3]
Putting it all together, we have:
d y d x = 16 x 3 − 18 x 2 + 3 \frac{dy}{dx} = 16x^3 - 18x^2 + 3 d x d y = 16 x 3 − 18 x 2 + 3
Bepaal: $D_x\left[ \sqrt{\frac{x}{2}} + \left( \frac{1}{3x} \right)^2 \right]$ Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find the derivative D x D_x D x , we differentiate the expression step by step:
First, denote the function as:
z = x 2 + ( 1 3 x ) 2 z = \sqrt{\frac{x}{2}} + \left( \frac{1}{3x} \right)^2 z = 2 x + ( 3 x 1 ) 2
Differentiate x 2 \sqrt{\frac{x}{2}} 2 x :
Using the chain rule:
d d x ( x 2 ) = 1 2 x 2 ⋅ 1 2 = 1 2 x 2 ⋅ 1 2 = 1 4 x 2 \frac{d}{dx}\left(\sqrt{\frac{x}{2}}\right) = \frac{1}{2\sqrt{\frac{x}{2}}} \cdot \frac{1}{2} = \frac{1}{2 \sqrt{\frac{x}{2}}}\cdot \frac{1}{2} = \frac{1}{4\sqrt{\frac{x}{2}}} d x d ( 2 x ) = 2 2 x 1 ⋅ 2 1 = 2 2 x 1 ⋅ 2 1 = 4 2 x 1
Differentiate ( 1 3 x ) 2 \left( \frac{1}{3x} \right)^2 ( 3 x 1 ) 2 :
First, identify it as 1 9 x 2 \frac{1}{9x^2} 9 x 2 1 :
d d x ( 1 9 x 2 ) = − 2 9 x 3 \frac{d}{dx}\left(\frac{1}{9x^2}\right) = -\frac{2}{9x^3} d x d ( 9 x 2 1 ) = − 9 x 3 2
Combining these results gives:
D x z = 1 4 x 2 − 2 9 x 3 D_x z = \frac{1}{4\sqrt{\frac{x}{2}}} - \frac{2}{9x^3} D x z = 4 2 x 1 − 9 x 3 2
Join the NSC students using SimpleStudy...97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;© 2025 SimpleStudy. All rights reserved