Photo AI

'n Toe rehogike houder (boks) moet soos volg vervaardig word: Afmetings: lengte (l), breedte (w) en hoogte (h) - NSC Mathematics - Question 9 - 2020 - Paper 1

Question icon

Question 9

'n-Toe-rehogike-houder-(boks)-moet-soos-volg-vervaardig-word:--Afmetings:-lengte-(l),-breedte-(w)-en-hoogte-(h)-NSC Mathematics-Question 9-2020-Paper 1.png

'n Toe rehogike houder (boks) moet soos volg vervaardig word: Afmetings: lengte (l), breedte (w) en hoogte (h). Die lengte (l) van die basis moet 3 keer die breedte... show full transcript

Worked Solution & Example Answer:'n Toe rehogike houder (boks) moet soos volg vervaardig word: Afmetings: lengte (l), breedte (w) en hoogte (h) - NSC Mathematics - Question 9 - 2020 - Paper 1

Step 1

9.1 Toon dat die koste om die houer te vervaardig soos volg bereken kan word:

96%

114 rated

Answer

To solve for the cost of manufacturing the box, we first need to determine the relationship between the dimensions given:

  1. We know that the length (l) is three times the width (w):
    l=3wl = 3w

  2. The volume (V) of the box is given by the formula:
    V=l×w×hV = l \times w \times h Given that the volume must be 5 m³:
    5=(3w)×w×h5 = (3w) \times w \times h
    Therefore,
    h=53w2h = \frac{5}{3w^2}

  3. The surface area (SA) of the box, which includes top, bottom, and sides, can be calculated as follows:
    SA=2lw+2lh+2whSA = 2lw + 2lh + 2wh Substituting for l and h, we have:
    SA=2(3w)w+2(3w)(53w2)+2w(53w2)SA = 2(3w)w + 2(3w)\left(\frac{5}{3w^2}\right) + 2w\left(\frac{5}{3w^2}\right)
    By simplifying, we arrive at the cost function:
    C=90w2+48h=90w2+48(53w2)C = 90w^2 + 48h = 90w^2 + 48\left(\frac{5}{3w^2}\right)
    This leads to the formulation
    C=90w2+80w1C = 90w^2 + 80w^{-1}.

Step 2

9.2 Bepaal die breedte van die houer sodat die koste om die houer te vervaardig, in minimum sal wees.

99%

104 rated

Answer

To find the minimum cost, we need to differentiate the cost function with respect to w. From the previous part, we have:

  1. The cost function:
    C(w)=90w2+48(53w2)C(w) = 90w^2 + 48\left(\frac{5}{3w^2}\right)

  2. To find the derivative of C with respect to w, we apply the power rule:
    C(w)=902w48(523w3)C'(w) = 90 \cdot 2w - 48 \cdot \left(\frac{5 \cdot 2}{3w^3}\right)
    This simplifies to:
    C(w)=180w4803w3C'(w) = 180w - \frac{480}{3w^3}

  3. Setting the derivative equal to zero allows us to find critical points:
    180w160w3=0180w - 160w^{-3} = 0
    Rearranging gives:
    180w4=160180w^4 = 160
    Thus:
    w4=1618=89w^4 = \frac{16}{18} = \frac{8}{9}
    Therefore,
    w=894=2330.76 mw = \sqrt[4]{\frac{8}{9}} = \frac{2}{3\sqrt{3}} \approx 0.76 \text{ m}
    Hence, the width w that minimizes the cost is approximately 0.76 m.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;