Photo AI

In die diagram sly dat hoeke van vierhoek CDEF mekaar by T - NSC Mathematics - Question 9 - 2019 - Paper 2

Question icon

Question 9

In-die-diagram-sly-dat-hoeke-van-vierhoek-CDEF-mekaar-by-T-NSC Mathematics-Question 9-2019-Paper 2.png

In die diagram sly dat hoeke van vierhoek CDEF mekaar by T. EF = 9 eenhede, DC = 18 eenhede, ET = 7 eenhede, TC = 10 eenhede, FT = 5 eenhede en TD = 14 eenhede. Be... show full transcript

Worked Solution & Example Answer:In die diagram sly dat hoeke van vierhoek CDEF mekaar by T - NSC Mathematics - Question 9 - 2019 - Paper 2

Step 1

8.2.1 EFĎ = ĒCD

96%

114 rated

Answer

To prove the equality of angles EFĎ and ĒCD, we can use the following reasoning based on the properties of cyclic quadrilaterals:

  1. Using the properties of cyclic quadrilaterals:

    • In a cyclic quadrilateral, opposite angles are supplementary, meaning that the sum of the angles equals 180 degrees.
  2. Identify the relevant angles:

    • Given that points E, F, C, and D are on the circumference of a circle, we focus on angles EFĎ and ĒCD.
  3. Applying the angle properties:

    • From angle properties, we can say: extAngleEFDˇ+extAngleEˉCD=180° ext{Angle EFĎ} + ext{Angle ĒCD} = 180°
    • If we denote angle EFĎ as x and angle ĒCD as y, we can express this as: x+y=180°x + y = 180°
  4. Substituting known values:

    • Based on the given lengths for EF, DC, ET, and others, we can infer that the angles formed by these segments maintain the cyclic property and thereby yield: extAngleEFDˇ=extAngleEˉCD ext{Angle EFĎ} = ext{Angle ĒCD}
    • This indicates that the two angles are equal in measure.
  5. Conclusion:

    • Thus, we conclude that EFĎ indeed equals ĒCD as required: extEFDˇ=extEˉCD ext{EFĎ} = ext{ĒCD}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;