In die diagram is ΔABC en ΔDEF gesket sodat $\angle A = \angle D$, $\angle B = \angle E$ en $\angle C = \angle F$ - NSC Mathematics - Question 10 - 2022 - Paper 2
Question 10
In die diagram is ΔABC en ΔDEF gesket sodat $\angle A = \angle D$, $\angle B = \angle E$ en $\angle C = \angle F$.
Gebruik die diagram in die ANTWOREDBOEK om die s... show full transcript
Worked Solution & Example Answer:In die diagram is ΔABC en ΔDEF gesket sodat $\angle A = \angle D$, $\angle B = \angle E$ en $\angle C = \angle F$ - NSC Mathematics - Question 10 - 2022 - Paper 2
Step 1
Bewys dat $\angle A = \angle D$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Gegee dat ∠A=∠D, dit is 'n basisvoorwaarde.
Step 2
Bewys dat $\angle B = \angle E$
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Die ooreenstemming van hoeke ∠B en ∠E is ook gegee.
Step 3
Bewys dat $\angle C = \angle F$
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Net soos voorheen, ∠C en ∠F is ooreenstemmend, wat die derde hoek se ooreenkoms bevestig.
Step 4
Toepassing van die hoeke se ooreenkoms
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Omdat die driehoeke gelyk is in hoeke, kan ons gebruik maak van die hoekenigma: as twee driehoeke ooreenstem in twee hoeke, dan is die driehoeke gelyk.
Step 5
Gebruik van die verhouding van syen
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Aanvaar ∠A=∠D, ∠B=∠E, en ∠C=∠F, ons kan sê dat die verhouding van die syen ook ooreenstem: DEAB=DFAC, wat bewys dat die sye in dieselfde verhouding is.