Photo AI

'n Regte sirkelvormige keël, met radius $p$ en hoogte $t$, is gemeasureer (uitsnits) uit 'n soliede sfeer (met middelpunt $C$) met 'n radius van 30 cm, soos getoon in die skets - NSC Mathematics - Question 9 - 2018 - Paper 1

Question icon

Question 9

'n-Regte-sirkelvormige-keël,-met-radius-$p$-en-hoogte-$t$,-is-gemeasureer-(uitsnits)-uit-'n-soliede-sfeer-(met-middelpunt-$C$)-met-'n-radius-van-30-cm,-soos-getoon-in-die-skets-NSC Mathematics-Question 9-2018-Paper 1.png

'n Regte sirkelvormige keël, met radius $p$ en hoogte $t$, is gemeasureer (uitsnits) uit 'n soliede sfeer (met middelpunt $C$) met 'n radius van 30 cm, soos getoon i... show full transcript

Worked Solution & Example Answer:'n Regte sirkelvormige keël, met radius $p$ en hoogte $t$, is gemeasureer (uitsnits) uit 'n soliede sfeer (met middelpunt $C$) met 'n radius van 30 cm, soos getoon in die skets - NSC Mathematics - Question 9 - 2018 - Paper 1

Step 1

1.1. AC in terme van t.

96%

114 rated

Answer

Using the Pythagorean theorem:

a) We have the triangle formed by the radius, height, and the slant height:

302=(t30)2+p230^{2} = (t - 30)^{2} + p^{2}

b) Simplifying:

p2=900(t30)2p^{2} = 900 - (t - 30)^{2} p2=900(t260t+900)p^{2} = 900 - (t^{2} - 60t + 900) p2=60tt2p^{2} = 60t - t^{2}

Step 2

1.2. p², in sy eenvoudigste vorm, in terme van t.

99%

104 rated

Answer

From the previous result we have:

p2=60tt2p^{2} = 60t - t^{2}

This expression is already in its simplest form.

Step 3

2. Toon dat die volume van die keël as V(t) = 20πt2(1/3)t geskryf kan word.

96%

101 rated

Answer

To find the volume of the cone:

V(t)=13pir2hV(t) = \frac{1}{3} \\pi r^{2}h

Here substitute r=pr = p and h=th = t, giving:

V(t)=13pi(p2)(t)V(t) = \frac{1}{3} \\pi (p^{2})(t)

Replacing p2p^{2} with 60tt260t - t^{2} leads us to:

V(t)=13pi(60tt2)tV(t) = \frac{1}{3} \\pi (60t - t^{2})t V(t)=20πt2(tt260)V(t) = 20\\\pi t^{2} \left( t - \frac{t^{2}}{60} \right)

Step 4

3. Bereken die waarde van t waarvoor die volume van die keël as maksimum sal wees.

98%

120 rated

Answer

To find maximum volume, we set the derivative of V(t)V(t) equal to zero:

V(t)=20πt2(1t30)V'(t) = 20\pi t^{2} \left( 1 - \frac{t}{30} \right)

Setting this equal to zero:

20πt2(1t30)=020\pi t^{2} (1 - \frac{t}{30}) = 0

This gives us: t=0ort=30cmt = 0 \, \text{or} \, t = 30 \, \text{cm}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;