'n Regte sirkelvormige keël, met radius $p$ en hoogte $t$, is gemeasureer (uitsnits) uit 'n soliede sfeer (met middelpunt $C$) met 'n radius van 30 cm, soos getoon in die skets - NSC Mathematics - Question 9 - 2018 - Paper 1
Question 9
'n Regte sirkelvormige keël, met radius $p$ en hoogte $t$, is gemeasureer (uitsnits) uit 'n soliede sfeer (met middelpunt $C$) met 'n radius van 30 cm, soos getoon i... show full transcript
Worked Solution & Example Answer:'n Regte sirkelvormige keël, met radius $p$ en hoogte $t$, is gemeasureer (uitsnits) uit 'n soliede sfeer (met middelpunt $C$) met 'n radius van 30 cm, soos getoon in die skets - NSC Mathematics - Question 9 - 2018 - Paper 1
Step 1
1.1. AC in terme van t.
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Using the Pythagorean theorem:
a) We have the triangle formed by the radius, height, and the slant height:
302=(t−30)2+p2
b) Simplifying:
p2=900−(t−30)2p2=900−(t2−60t+900)p2=60t−t2
Step 2
1.2. p², in sy eenvoudigste vorm, in terme van t.
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
From the previous result we have:
p2=60t−t2
This expression is already in its simplest form.
Step 3
2. Toon dat die volume van die keël as V(t) = 20πt2(1/3)t geskryf kan word.
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the volume of the cone:
V(t)=31pir2h
Here substitute r=p and h=t, giving:
V(t)=31pi(p2)(t)
Replacing p2 with 60t−t2 leads us to:
V(t)=31pi(60t−t2)tV(t)=20πt2(t−60t2)
Step 4
3. Bereken die waarde van t waarvoor die volume van die keël as maksimum sal wees.
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find maximum volume, we set the derivative of V(t) equal to zero: