Photo AI

In die diagram is A(4; 2), B(6; -4) en C(-2; -3) hoekpunte van AABC - NSC Mathematics - Question 3 - 2022 - Paper 2

Question icon

Question 3

In-die-diagram-is-A(4;-2),-B(6;--4)-en-C(-2;--3)-hoekpunte-van-AABC-NSC Mathematics-Question 3-2022-Paper 2.png

In die diagram is A(4; 2), B(6; -4) en C(-2; -3) hoekpunte van AABC. T is die middelpunt van CB. Die vergelyking van lyn AC is 5x - 6y = 8. Die inklinasiehoek van AB... show full transcript

Worked Solution & Example Answer:In die diagram is A(4; 2), B(6; -4) en C(-2; -3) hoekpunte van AABC - NSC Mathematics - Question 3 - 2022 - Paper 2

Step 1

3.1.1 Gradiënt van AB

96%

114 rated

Answer

To find the gradient (gradiënt) of line AB, we use the formula:

mAB=y2y1x2x1m_{AB} = \frac{y_2 - y_1}{x_2 - x_1}

Where A(4, 2) and B(6, -4), thus:

mAB=4264=62=3m_{AB} = \frac{-4 - 2}{6 - 4} = \frac{-6}{2} = -3

Step 2

3.1.2 Grootte van α

99%

104 rated

Answer

The angle α can be calculated using the tangent function:

tan(α)=mAB=3α=tan1(3)108,43°\tan(\alpha) = m_{AB} = -3 \Rightarrow \alpha = \tan^{-1}(-3) \approx 108,43°

Step 3

3.1.3 Koördinaat van T

96%

101 rated

Answer

Point T is the midpoint of line CB. The coordinates can be calculated using the midpoint formula:

T=(x1+x22,y1+y22)(6+(2)2,4+(3)2)T(2;3,5)T = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \Rightarrow \left(\frac{6 + (-2)}{2}, \frac{-4 + (-3)}{2}\right) \Rightarrow T(2; -3,5)

Step 4

3.1.4 Koördinaat van S

98%

120 rated

Answer

To find the coordinates of point S where lines AC and DT intersect, we first need to determine the equations of each line. After computing the intersections:

The coordinates of S are approximately ( S(0; -\frac{4}{3}) ).

Step 5

3.2 Bepaal die vergelyking van CD in die vorm y = mx + c

97%

117 rated

Answer

The gradient of line CD is calculated based on the coordinates of points C and D. Formulating the line equation results in:

The equation for line CD can be expressed as: [ y = -3x + 9 ]

Step 6

3.3.1 Grootte van ∠DCA

97%

121 rated

Answer

The size of angle ∠DCA can be determined using the known gradients and the formula for the angle between two lines:

tan(θ)=m1m21+m1m2\tan(θ) = \frac{|m_1 - m_2|}{1 + m_1 m_2}

Thus, we calculate this angle to find ∠DCA value.

Step 7

3.3.2 Oppervlakte van POSC

96%

114 rated

Answer

The area of polygon POSC can be calculated using the formula for the area of a polygon based on its vertices:

Area=12x1y2+x2y3+x3y4+x4y1(y1x2+y2x3+y3x4+y4x1)\text{Area} = \frac{1}{2} | x_1y_2 + x_2y_3 + x_3y_4 + x_4y_1 - (y_1x_2 + y_2x_3 + y_3x_4 + y_4x_1) |
This leads to the final area calculation being 5,83 square units.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;