Photo AI

In die diagram is A(3 ; 4), B en C hoeke punte van ΔABC - NSC Mathematics - Question 3 - 2024 - Paper 2

Question icon

Question 3

In-die-diagram-is-A(3-;-4),-B-en-C-hoeke-punte-van-ΔABC-NSC Mathematics-Question 3-2024-Paper 2.png

In die diagram is A(3 ; 4), B en C hoeke punte van ΔABC. AB is verleng na S. D en F is onderskeidelik die x- en y-afsnitte van AC. F is die middelpunt van AC en die ... show full transcript

Worked Solution & Example Answer:In die diagram is A(3 ; 4), B en C hoeke punte van ΔABC - NSC Mathematics - Question 3 - 2024 - Paper 2

Step 1

Toon dat k = \frac{1}{3}.

96%

114 rated

Answer

We start with the equation of line AB:

y=kx+3y = kx + 3

Substituting point A(3, 4) into the equation, we have:

4=k(3)+34 = k(3) + 3

Solving for k: 43=3k4 - 3 = 3k 1=3k1 = 3k k=13k = \frac{1}{3}

Step 2

Bereken die koördinate van B, die x-afsnit van lyn AS.

99%

104 rated

Answer

To find the x-intercept of line AS, we set y = 0 in the line equation. The equation of line AS is obtained from the coordinates of points A and S. Calculating the gradient:

mAS=yS4xS3m_{AS} = \frac{y_S - 4}{x_S - 3}

Let point S be (x_S, y_S). Setting y = 0:

0=04xS3+40 = \frac{0 - 4}{x_S - 3} + 4

We solve for x_S now:

Step 3

Bereken die koördinate van C.

96%

101 rated

Answer

Point C can be found by substituting back into the equation of line AC, which is derived from the coordinates and gradients we have thus far. We have line AC:

y=2x2y = 2x - 2

Substituting an appropriate x-value yields:

Step 4

Bepaal die vergelyking van die lyn parallel aan BC en wat deur S(-15 ; -2) gaan.

98%

120 rated

Answer

The slope for line BC can be found using its coordinates. Once we find the slope, we apply the point-slope form using S(-15, -2):

y+2=mBC(x+15)y + 2 = m_{BC}(x + 15)

Rearranging gives us the required equation:

Step 5

Bereken die grootte van ∠BAC.

97%

117 rated

Answer

To find the angle ∠BAC, we need to use the tangent of the slope found in line BC:

tan(α)=mBC=yByAxBxAtan(\alpha) = m_{BC} = \frac{y_B - y_A}{x_B - x_A}

Evaluating this gives the angle using the arctangent function.

Step 6

As dit verder gegee word dat AC se lengte \frac{6}{5} eenhede is, bereken die waarde van Area van ΔABD en Area van ΔASC.

97%

121 rated

Answer

The area of triangle ΔABD can be calculated using the formula:

Area=12×base×heightArea = \frac{1}{2} \times base \times height

Finding lengths using the coordinates derived earlier will allow us to finalize both areas.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;