Photo AI

Los op vir $x$: 1.1.1 $x^2 - 4x + 3 = 0$ 1.1.2 $5x^2 - 5x + 1 = 0$ (korrek tot TWEE desimale plekke) 1.1.3 $x^2 - 3x - 10 > 0$ 1.1.4 $3 rac{ oot{}}{x} = 4$ Los geliktydig op vir $x$ en $y$: 3$x - y = 2$ en 2$y + 9$x$^2 = -1$ Indien $3^x = 64$ van $5 rac{ oot{}}{p} = 64$, SONDERS die gebruik van 'n sakrekenaar, die waarde van: $ rac{[3^x]}{ oot{5}{p}}$ - NSC Mathematics - Question 1 - 2018 - Paper 1

Question icon

Question 1

Los-op-vir-$x$:--1.1.1-$x^2---4x-+-3-=-0$---1.1.2-$5x^2---5x-+-1-=-0$-(korrek-tot-TWEE-desimale-plekke)---1.1.3-$x^2---3x---10->-0$---1.1.4-$3-rac{-oot{}}{x}-=-4$----Los-geliktydig-op-vir-$x$-en-$y$:--3$x---y-=-2$---en-2$y-+-9$x$^2-=--1$----Indien-$3^x-=-64$-van-$5-rac{-oot{}}{p}-=-64$,-SONDERS-die-gebruik-van-'n-sakrekenaar,---die-waarde-van:-$-rac{[3^x]}{-oot{5}{p}}$-NSC Mathematics-Question 1-2018-Paper 1.png

Los op vir $x$: 1.1.1 $x^2 - 4x + 3 = 0$ 1.1.2 $5x^2 - 5x + 1 = 0$ (korrek tot TWEE desimale plekke) 1.1.3 $x^2 - 3x - 10 > 0$ 1.1.4 $3 rac{ oot{}}{x} = 4$ ... show full transcript

Worked Solution & Example Answer:Los op vir $x$: 1.1.1 $x^2 - 4x + 3 = 0$ 1.1.2 $5x^2 - 5x + 1 = 0$ (korrek tot TWEE desimale plekke) 1.1.3 $x^2 - 3x - 10 > 0$ 1.1.4 $3 rac{ oot{}}{x} = 4$ Los geliktydig op vir $x$ en $y$: 3$x - y = 2$ en 2$y + 9$x$^2 = -1$ Indien $3^x = 64$ van $5 rac{ oot{}}{p} = 64$, SONDERS die gebruik van 'n sakrekenaar, die waarde van: $ rac{[3^x]}{ oot{5}{p}}$ - NSC Mathematics - Question 1 - 2018 - Paper 1

Step 1

1.1.1 $x^2 - 4x + 3 = 0$

96%

114 rated

Answer

We can factor the equation:

(x3)(x1)=0(x - 3)(x - 1) = 0

Thus, the solutions are:

  • x=3x = 3
  • x=1x = 1

Step 2

1.1.2 $5x^2 - 5x + 1 = 0$ (korrek tot TWEE desimale plekke)

99%

104 rated

Answer

Using the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

For our equation, where a=5a = 5, b=5b = -5, and c=1c = 1:

  1. Calculate the discriminant: b24ac=(5)24(5)(1)=2520=5b^2 - 4ac = (-5)^2 - 4(5)(1) = 25 - 20 = 5
  2. Substitute into the formula: x=5±510x = \frac{5 \pm \sqrt{5}}{10}
  3. This gives:
  • x0.72x \approx 0.72
  • x0.28x \approx 0.28

Step 3

1.1.3 $x^2 - 3x - 10 > 0$

96%

101 rated

Answer

Factoring the quadratic we find:

(x5)(x+2)>0(x - 5)(x + 2) > 0

This means:

  • x<2x < -2 or x>5x > 5

Step 4

1.1.4 $3\frac{\root{}}{x} = 4$

98%

120 rated

Answer

Squaring both sides gives:

3x=163x = 16

Thus:

x=163x = \frac{16}{3}

Step 5

3$x - y = 2$ en 2$y + 9$x$^2 = -1$

97%

117 rated

Answer

From the first equation, we find: y=3x2y = 3x - 2

Substituting into the second equation:

2(3x2)+9x2=12(3x - 2) + 9x^2 = -1

This simplifies to: 18x4+9x2=118x - 4 + 9x^2 = -1

Rearranging gives: 9x2+18x3=09x^2 + 18x - 3 = 0

Using the quadratic formula: x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Solving this gives the xx values. Substitute back to find yy values.

Step 6

Indien $3^x = 64$, bereken die waarde van: $ rac{[3^x]}{ oot{5}{p}}$

97%

121 rated

Answer

Since 3x=643^x = 64, we recognize: 43=643x=434^3 = 64 \Rightarrow 3^x = 4^3 Thus, x=4x = 4. Next, if p=64\sqrt{p} = 64, then p=8p = 8. To calculate: 3x5p=648=8\frac{3^x}{\sqrt{5}{p}} = \frac{64}{8} = 8

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;