Los op vir $x$:
1.1.1 $x^2 - 4x + 3 = 0$
1.1.2 $5x^2 - 5x + 1 = 0$ (korrek tot TWEE desimale plekke)
1.1.3 $x^2 - 3x - 10 > 0$
1.1.4 $3rac{
oot{}}{x} = 4$
Los geliktydig op vir $x$ en $y$:
3$x - y = 2$
en 2$y + 9$x$^2 = -1$
Indien $3^x = 64$ van $5rac{
oot{}}{p} = 64$, SONDERS die gebruik van 'n sakrekenaar,
die waarde van: $rac{[3^x]}{
oot{5}{p}}$ - NSC Mathematics - Question 1 - 2018 - Paper 1
Question 1
Los op vir $x$:
1.1.1 $x^2 - 4x + 3 = 0$
1.1.2 $5x^2 - 5x + 1 = 0$ (korrek tot TWEE desimale plekke)
1.1.3 $x^2 - 3x - 10 > 0$
1.1.4 $3rac{
oot{}}{x} = 4$
... show full transcript
Worked Solution & Example Answer:Los op vir $x$:
1.1.1 $x^2 - 4x + 3 = 0$
1.1.2 $5x^2 - 5x + 1 = 0$ (korrek tot TWEE desimale plekke)
1.1.3 $x^2 - 3x - 10 > 0$
1.1.4 $3rac{
oot{}}{x} = 4$
Los geliktydig op vir $x$ en $y$:
3$x - y = 2$
en 2$y + 9$x$^2 = -1$
Indien $3^x = 64$ van $5rac{
oot{}}{p} = 64$, SONDERS die gebruik van 'n sakrekenaar,
die waarde van: $rac{[3^x]}{
oot{5}{p}}$ - NSC Mathematics - Question 1 - 2018 - Paper 1
Step 1
1.1.1 $x^2 - 4x + 3 = 0$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
We can factor the equation:
(x−3)(x−1)=0
Thus, the solutions are:
x=3
x=1
Step 2
1.1.2 $5x^2 - 5x + 1 = 0$ (korrek tot TWEE desimale plekke)
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Using the quadratic formula:
x=2a−b±b2−4ac
For our equation, where a=5, b=−5, and c=1:
Calculate the discriminant:
b2−4ac=(−5)2−4(5)(1)=25−20=5
Substitute into the formula:
x=105±5
This gives:
x≈0.72
x≈0.28
Step 3
1.1.3 $x^2 - 3x - 10 > 0$
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Factoring the quadratic we find:
(x−5)(x+2)>0
This means:
x<−2 or x>5
Step 4
1.1.4 $3\frac{\root{}}{x} = 4$
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Squaring both sides gives:
3x=16
Thus:
x=316
Step 5
3$x - y = 2$ en 2$y + 9$x$^2 = -1$
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
From the first equation, we find:
y=3x−2
Substituting into the second equation:
2(3x−2)+9x2=−1
This simplifies to:
18x−4+9x2=−1
Rearranging gives:
9x2+18x−3=0
Using the quadratic formula:
x=2a−b±b2−4ac.
Solving this gives the x values. Substitute back to find y values.
Step 6
Indien $3^x = 64$, bereken die waarde van: $rac{[3^x]}{
oot{5}{p}}$
97%
121 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Since 3x=64, we recognize:
43=64⇒3x=43
Thus, x=4.
Next, if p=64, then p=8. To calculate:
5p3x=864=8