Photo AI

1.1 Solve for $x$: 1.1.1 $x^2 + 2x - 15 = 0$ 1.1.2 $5x^2 - x - 9 = 0$ (Leave your answer correct to TWO decimal places.) 1.1.3 $x^2 \\leq 3x$ 1.2 Given: $\frac{a + 64}{a} = 16$ 1.2.1 Solve for $a$ - NSC Mathematics - Question 1 - 2022 - Paper 1

Question icon

Question 1

1.1-Solve-for-$x$:--1.1.1-$x^2-+-2x---15-=-0$--1.1.2-$5x^2---x---9-=-0$-(Leave-your-answer-correct-to-TWO-decimal-places.)--1.1.3-$x^2-\\leq-3x$--1.2-Given:-$\frac{a-+-64}{a}-=-16$--1.2.1-Solve-for-$a$-NSC Mathematics-Question 1-2022-Paper 1.png

1.1 Solve for $x$: 1.1.1 $x^2 + 2x - 15 = 0$ 1.1.2 $5x^2 - x - 9 = 0$ (Leave your answer correct to TWO decimal places.) 1.1.3 $x^2 \\leq 3x$ 1.2 Given: $\frac{a... show full transcript

Worked Solution & Example Answer:1.1 Solve for $x$: 1.1.1 $x^2 + 2x - 15 = 0$ 1.1.2 $5x^2 - x - 9 = 0$ (Leave your answer correct to TWO decimal places.) 1.1.3 $x^2 \\leq 3x$ 1.2 Given: $\frac{a + 64}{a} = 16$ 1.2.1 Solve for $a$ - NSC Mathematics - Question 1 - 2022 - Paper 1

Step 1

1.1.1 $x^2 + 2x - 15 = 0$

96%

114 rated

Answer

To solve the quadratic equation x2+2x15=0x^2 + 2x - 15 = 0, we need to factor it. The factors of this equation are:

(x+5)(x3)=0(x + 5)(x - 3) = 0
Setting each factor to zero gives us the solutions:

  • x+5=0x=5x + 5 = 0 \Rightarrow x = -5
  • x3=0x=3x - 3 = 0 \Rightarrow x = 3

Thus, the solutions are x=5x = -5 or x=3x = 3.

Step 2

1.1.2 $5x^2 - x - 9 = 0$

99%

104 rated

Answer

To solve the quadratic equation 5x2x9=05x^2 - x - 9 = 0, we can use the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
Here, a=5a = 5, b=1b = -1, and c=9c = -9. Calculating the discriminant:

b24ac=(1)24(5)(9)=1+180=181b^2 - 4ac = (-1)^2 - 4(5)(-9) = 1 + 180 = 181

Now substituting into the formula:

x=1±18110x = \frac{1 \pm \sqrt{181}}{10}

Calculating the values, we find:

  • x1.45x \approx 1.45 (to two decimal places)
  • x1.25x \approx -1.25.

Step 3

1.1.3 $x^2 \leq 3x$

96%

101 rated

Answer

First, rearranging gives us:
x23x0x^2 - 3x \leq 0
Factoring yields:
(x)(x3)0(x)(x - 3) \leq 0

To find the intervals, we identify critical points at x=0x = 0 and x=3x = 3. Analyzing the sign of the product in each interval:

  • For x<0x < 0, the product is positive.
  • For 0x30 \leq x \leq 3, the product is non-positive.
  • For x>3x > 3, the product is positive.

Thus, the solution is:

0x30 \leq x \leq 3

Step 4

1.2.1 Solve for $a$.

98%

120 rated

Answer

Starting with the equation:

a+64a=16\frac{a + 64}{a} = 16

Multiplying both sides by aa:

a+64=16aa + 64 = 16a

Rearranging gives:

64=15a64 = 15a

Thus, solving for aa results in:

a=64154.27a = \frac{64}{15} \approx 4.27

Step 5

1.2.2 Hence, solve for $x$: $2^x + 2^{x-6} = 16$

97%

117 rated

Answer

From part 1.2.1, we established aa. Now we begin:

2x+2x6=162^x + 2^{x-6} = 16

We can express 1616 as 242^4, enabling us to combine terms:

2x+2x64=242^x + \frac{2^x}{64} = 2^4

Factoring out 2x2^x gives:

2x(1+164)=242^x \left(1 + \frac{1}{64}\right) = 2^4

Simplifying: 2x6564=242^x \cdot \frac{65}{64} = 2^4

Thus, 2x=2464652^x = 2^4 \cdot \frac{64}{65}

The resultant exponent gives us the solution for x: x3x \approx 3.

Step 6

1.3 Without using a calculator, calculate the value of $\sqrt{\frac{2^{1002} + 2^{1006}}{17(2)^{98}}}$

97%

121 rated

Answer

We begin by simplifying the expression:

21002+2100617(2)98\sqrt{\frac{2^{1002} + 2^{1006}}{17(2)^{98}}}

By factoring out 210022^{1002} from the numerator:

=21002(1+24)17(2)98= \sqrt{\frac{2^{1002}(1 + 2^4)}{17(2)^{98}}}

This simplifies to:

=210021717298= \sqrt{\frac{2^{1002} \cdot 17}{17 \cdot 2^{98}}} = \sqrt{2^4} = 2$$.

Step 7

1.4 Solve for $x$ and $y$ simultaneously:

96%

114 rated

Answer

We start with the given equations:

  1. 2xy=22x - y = 2
  2. 1x3y=1\frac{1}{x} - 3y = 1

From equation 1, we can express yy:

y=2x2y = 2x - 2

Now substituting this into equation 2:

1x3(2x2)=1\frac{1}{x} - 3(2x - 2) = 1

Expanding yields:

1x6x+6=1\frac{1}{x} - 6x + 6 = 1

Rearranging gives:

1x6x+5=0\frac{1}{x} - 6x + 5 = 0

Multiplying through by xx (assuming x0x \neq 0):

16x2+5x=01 - 6x^2 + 5x = 0

Rearranging yields:
6x25x1=06x^2 - 5x - 1 = 0

Using the quadratic formula: x=5±(5)24(6)(1)2(6)x = \frac{5 \pm \sqrt{(-5)^2 - 4(6)(-1)}}{2(6)}

Calculating gives result for xx values and substituting back to find corresponding yy values.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;