Photo AI

Solve for x: 1.1.1 $x^2 - x - 20 = 0$ 1.1.2 $3x^3 - 2x - 6 = 0$ (correct to TWO decimal places) 1.1.3 $(x - 1)^2 > 9$ 1.1.4 $2 ext{√}x + 6 + 2 = x$ 1.2 Solve simultaneously for x and y: $4x + y = 2$ and $4x + y^2 = 8$ 1.3 If it is given that $2^{x} * 3^{y} = 24^{x}$, determine the numerical value of $x - y$. - NSC Mathematics - Question 1 - 2021 - Paper 1

Question icon

Question 1

Solve-for-x:--1.1.1--$x^2---x---20-=-0$--1.1.2--$3x^3---2x---6-=-0$-(correct-to-TWO-decimal-places)--1.1.3--$(x---1)^2->-9$--1.1.4--$2-ext{√}x-+-6-+-2-=-x$--1.2--Solve-simultaneously-for-x-and-y:--$4x-+-y-=-2$-and-$4x-+-y^2-=-8$--1.3--If-it-is-given-that-$2^{x}-*-3^{y}-=-24^{x}$,-determine-the-numerical-value-of-$x---y$.-NSC Mathematics-Question 1-2021-Paper 1.png

Solve for x: 1.1.1 $x^2 - x - 20 = 0$ 1.1.2 $3x^3 - 2x - 6 = 0$ (correct to TWO decimal places) 1.1.3 $(x - 1)^2 > 9$ 1.1.4 $2 ext{√}x + 6 + 2 = x$ 1.2 Sol... show full transcript

Worked Solution & Example Answer:Solve for x: 1.1.1 $x^2 - x - 20 = 0$ 1.1.2 $3x^3 - 2x - 6 = 0$ (correct to TWO decimal places) 1.1.3 $(x - 1)^2 > 9$ 1.1.4 $2 ext{√}x + 6 + 2 = x$ 1.2 Solve simultaneously for x and y: $4x + y = 2$ and $4x + y^2 = 8$ 1.3 If it is given that $2^{x} * 3^{y} = 24^{x}$, determine the numerical value of $x - y$. - NSC Mathematics - Question 1 - 2021 - Paper 1

Step 1

1.1.1 $x^2 - x - 20 = 0$

96%

114 rated

Answer

To solve the quadratic equation x2x20=0x^2 - x - 20 = 0, we can factor it as follows:

(x5)(x+4)=0(x - 5)(x + 4) = 0

Setting each factor to zero gives us the solutions:

  1. x5=0x=5x - 5 = 0 \\ \Rightarrow x = 5
  2. x+4=0x=4x + 4 = 0 \\ \Rightarrow x = -4.

Thus, the solutions are x=5x = 5 and x=4x = -4.

Step 2

1.1.2 $3x^3 - 2x - 6 = 0$ (correct to TWO decimal places)

99%

104 rated

Answer

To solve the cubic equation 3x32x6=03x^3 - 2x - 6 = 0, we can use numerical methods or synthetic division. Upon applying the method and using a calculator, we find the roots:

  1. x1.12x \approx 1.12
  2. x1.79x \approx 1.79.

Thus, the roots are approximately x=1.12x = 1.12 and x=1.79x = 1.79.

Step 3

1.1.3 $(x - 1)^2 > 9$

96%

101 rated

Answer

To solve the inequality (x1)2>9(x - 1)^2 > 9, we first find the critical values by taking the square root:

  1. (x1)>3x>4(x - 1) > 3 \Rightarrow x > 4
  2. (x1)<3x<2(x - 1) < -3 \Rightarrow x < -2.

Combining these results, we have:

x<2 or x>4x < -2 \text{ or } x > 4.

Step 4

1.1.4 $2 ext{√}x + 6 + 2 = x$

98%

120 rated

Answer

Rearranging the equation yields:

2x+8=x2\text{√}x + 8 = x

To isolate the term with the square root, we have:

2x=x82\text{√}x = x - 8

Dividing by 2:

x=x82\text{√}x = \frac{x - 8}{2}

Squaring both sides produces:

x=(x82)2x = \left(\frac{x - 8}{2}\right)^2

Expanding and solving will eventually lead to:

  1. x=10x = 10.

Thus, the solution is x=10x = 10.

Step 5

1.2 Solve simultaneously for x and y:

97%

117 rated

Answer

To solve the equations:

  1. 4x+y=24x + y = 2
  2. 4x+y2=84x + y^2 = 8,

We can substitute y=24xy = 2 - 4x from the first equation into the second:

4x+(24x)2=84x + (2 - 4x)^2 = 8

Expanding the equation:

(24x)2=416x+16x24x+416x+16x2=8(2 - 4x)^2 = 4 - 16x + 16x^2\Rightarrow 4x + 4 - 16x + 16x^2 = 8

Combining like terms:

16x212x4=016x^2 - 12x - 4 = 0

We can use the quadratic formula to find xx values:

x=(12)±(12)2416(4)216=1 or 14.x = \frac{-(-12) \pm \sqrt{(-12)^2 - 4 \cdot 16 \cdot (-4)}}{2 \cdot 16} = 1\text{ or } -\frac{1}{4}.

Substituting these back into either equation gives corresponding y-values as:

  1. y=1y = 1 when x=1x = 1
  2. y=3y = 3 when x=14x = -\frac{1}{4}.

Step 6

1.3 If it is given that $2^{x} * 3^{y} = 24^{x}$, determine the numerical value of $x - y$.

97%

121 rated

Answer

Given:

2x3y=24x=(2331)x=23x3x.2^{x} * 3^{y} = 24^{x} = (2^3 * 3^1)^{x} = 2^{3x} * 3^{x}.

Equating the exponents of the base 22 and the base 33 gives us:

  1. From 2x=23xx=3x2x=0x=02^{x} = 2^{3x} \Rightarrow x = 3x \Rightarrow 2x = 0 \Rightarrow x = 0.
  2. From 3y=3xy=x=03^{y} = 3^{x} \Rightarrow y = x = 0.

Thus, the values are x=0x = 0 and y=0y = 0, leading to:

xy=00=0.x - y = 0 - 0 = 0.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;