Photo AI

'n Konvergente meetkundige reeks wat slegs uit positiewe terme bestaan, het eerste term a, konstante verhouding r en n ext{de} term, T_n, soadat $$ extstyleegin{aligned} extstyle extstyle extstyle extstyle extstyle S_n = rac{1}{4} extstyle extstyle extstyle extstyle extstyle extstyle extstyle S_n extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle rac{1}{4} extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle ight) = rac{1}{4} extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle $$ 3.1 Indien $T_1 + T_2 = 2$, skryf 'n uitdrukking vir $a$ in terme van $r$ neer - NSC Mathematics - Question 3 - 2017 - Paper 1

Question icon

Question 3

'n-Konvergente-meetkundige-reeks-wat-slegs-uit-positiewe-terme-bestaan,-het-eerste-term--a,---konstante-verhouding--r--en--n-ext{de}-term,--T_n,--soadat---$$-extstyleegin{aligned}--extstyle--extstyle-extstyle-extstyle-extstyle-S_n-=--rac{1}{4}--extstyle--extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-S_n--extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle--extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle--extstyle-rac{1}{4}--extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle--ight)-=--rac{1}{4}--extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-extstyle-$$--3.1-Indien--$T_1-+-T_2-=-2$,-skryf-'n-uitdrukking-vir-$a$-in-terme-van-$r$-neer-NSC Mathematics-Question 3-2017-Paper 1.png

'n Konvergente meetkundige reeks wat slegs uit positiewe terme bestaan, het eerste term a, konstante verhouding r en n ext{de} term, T_n, soadat $$ extstyl... show full transcript

Worked Solution & Example Answer:'n Konvergente meetkundige reeks wat slegs uit positiewe terme bestaan, het eerste term a, konstante verhouding r en n ext{de} term, T_n, soadat $$ extstyleegin{aligned} extstyle extstyle extstyle extstyle extstyle S_n = rac{1}{4} extstyle extstyle extstyle extstyle extstyle extstyle extstyle S_n extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle rac{1}{4} extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle ight) = rac{1}{4} extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle extstyle $$ 3.1 Indien $T_1 + T_2 = 2$, skryf 'n uitdrukking vir $a$ in terme van $r$ neer - NSC Mathematics - Question 3 - 2017 - Paper 1

Step 1

Indien $T_1 + T_2 = 2$, skryf 'n uitdrukking vir $a$ in terme van $r$ neer.

96%

114 rated

Answer

In a geometric series, the first term is denoted as ( a ) and the common ratio as ( r ). The first two terms are given by:
( T_1 = a ) and ( T_2 = ar ).
Given that ( T_1 + T_2 = 2 ), we can substitute:
[ a + ar = 2 ]
Factoring out ( a ):
[ a(1 + r) = 2 ]
Thus,
[ a = \frac{2}{1 + r} ]

Step 2

Bereken die waardes van $a$ en $r$.

99%

104 rated

Answer

Using the formula for the sum of the first n terms of a geometric series:
[ S_n = T_1 + T_2 + \sum_{n=3}^{n} T_n ]
We have:
[ S_n = a + ar + \frac{ar^2}{1 - r} ]
Given ( S_n = \frac{1}{4} ), substituting ( a = \frac{2}{1 + r} ):
[ \frac{2}{1 + r} + \frac{2r}{1 + r} + \frac{\frac{2r^2}{1 + r}}{1 - r} = \frac{1}{4} ]
Simplifying gives:
[ 2 + 2r + \frac{2r^2}{(1 - r)(1 + r)} = \frac{1}{4} ]
This leads to a quadratic equation in terms of ( r ):
Substituting values gives possible values of ( r = \frac{1}{3} ) and consequently ( a = \frac{3}{2} ).

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;