Photo AI

Los op vir $x$: 1.1.1 $(3x - 6)(x + 2) = 0$ 1.1.2 $2x^2 - 6x + 1 = 0$ (korrek tot TWEVE desimale plekke) 1.1.3 $x^2 - 90 > x$ 1.1.4 $x - 7/ extstyle{ oot{x}} = -12$ Los gelktydig vir $x$ en $y$ op: $2x - y = 2$ $xy = 4$ - NSC Mathematics - Question 1 - 2022 - Paper 1

Question icon

Question 1

Los-op-vir-$x$:--1.1.1--$(3x---6)(x-+-2)-=-0$--1.1.2--$2x^2---6x-+-1-=-0$-(korrek-tot-TWEVE-desimale-plekke)--1.1.3--$x^2---90->-x$--1.1.4--$x---7/-extstyle{-oot{x}}-=--12$--Los-gelktydig-vir-$x$-en-$y$-op:--$2x---y-=-2$--$xy-=-4$-NSC Mathematics-Question 1-2022-Paper 1.png

Los op vir $x$: 1.1.1 $(3x - 6)(x + 2) = 0$ 1.1.2 $2x^2 - 6x + 1 = 0$ (korrek tot TWEVE desimale plekke) 1.1.3 $x^2 - 90 > x$ 1.1.4 $x - 7/ extstyle{ oot{x}}... show full transcript

Worked Solution & Example Answer:Los op vir $x$: 1.1.1 $(3x - 6)(x + 2) = 0$ 1.1.2 $2x^2 - 6x + 1 = 0$ (korrek tot TWEVE desimale plekke) 1.1.3 $x^2 - 90 > x$ 1.1.4 $x - 7/ extstyle{ oot{x}} = -12$ Los gelktydig vir $x$ en $y$ op: $2x - y = 2$ $xy = 4$ - NSC Mathematics - Question 1 - 2022 - Paper 1

Step 1

1.1.1 $(3x - 6)(x + 2) = 0$

96%

114 rated

Answer

To solve the equation (3x6)(x+2)=0(3x - 6)(x + 2) = 0, we set each factor equal to zero:

  1. Set 3x6=03x - 6 = 0:

    3x=63x = 6
    x=2x = 2

  2. Set x+2=0x + 2 = 0:

    x=2x = -2

Thus, the solutions are x=2x = 2 and x=2x = -2.

Step 2

1.1.2 $2x^2 - 6x + 1 = 0$ (korrek tot TWEVE desimale plekke)

99%

104 rated

Answer

To solve 2x26x+1=02x^2 - 6x + 1 = 0, we apply the quadratic formula:

x = rac{-b ext{ ± } ext{√}(b^2 - 4ac)}{2a} Where a=2a = 2, b=6b = -6, and c=1c = 1.

Calculating b24acb^2 - 4ac: b24ac=(6)24(2)(1)=368=28b^2 - 4ac = (-6)^2 - 4(2)(1) = 36 - 8 = 28

Now substituting into the quadratic formula: x = rac{6 ext{ ± } ext{√}28}{4} = rac{6 ext{ ± } 2 ext{√}7}{4} = rac{3 ext{ ± } ext{√}7}{2}

So the solutions are: xext2.82extand0.18x ext{ } ≈ 2.82 ext{ and } 0.18.

Step 3

1.1.3 $x^2 - 90 > x$

96%

101 rated

Answer

Rearranging the inequality gives: x2x90>0x^2 - x - 90 > 0 Factoring or using the quadratic formula can find the critical values: Calculate using the quadratic formula, where a=1a = 1, b=1b = -1, and c=90c = -90:

x = rac{-(-1) ext{ ± } ext{√}((-1)^2 - 4(1)(-90))}{2(1)}

This leads to critical values: x=10extand9x = 10 ext{ and } -9

The intervals to test are (extstyleext,9)(- extstyle{ ext{-∞}}, -9), (9,10)(-9, 10), and (10,ext+)(10, ext{ +∞}). Testing these intervals shows: The solution is: x<9extorx>10.x < -9 ext{ or } x > 10.

Step 4

1.1.4 $x - 7/ extstyle{ oot{x}} = -12$

98%

120 rated

Answer

Isolate the root:

oot{x}} + 12 = 0$$ Rearranging gives: $$ extstyle{ oot{x}} = 3 ext{ or } extstyle{ oot{x}} = 4$$ Squaring both sides: $$x = 9 ext{ or } x = 16$$ Therefore, the solutions are: $$x = 9 ext{ and } x = 16.$$

Step 5

1.2 Los gelktydig vir $x$ en $y$ op:

97%

117 rated

Answer

We have the equations:

  1. 2xy=22x - y = 2
  2. xy=4xy = 4

From the first equation, express yy in terms of xx: y=2x2y = 2x - 2

Substituting into the second equation: x(2x2)=4x(2x - 2) = 4 Expanding and rearranging gives: 2x22x4=02x^2 - 2x - 4 = 0

dividing by 2: x2x2=0x^2 - x - 2 = 0 Factoring gives: (x2)(x+1)=0(x - 2)(x + 1) = 0 The solutions for xx are: x=2extorx=1x = 2 ext{ or } x = -1

Now substituting back to find yy:

  • For x=2x = 2: y=2(2)2=2y = 2(2) - 2 = 2
  • For x=1x = -1: y=2(1)2=4y = 2(-1) - 2 = -4 Thus the pairs (x,y)(x, y) are (2,2)(2, 2) and (1,4)(-1, -4).

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;