Photo AI

Solve for x: 1.1.1 $x^2 + 9x + 14 = 0$ 1.1.2 $4x^2 + 9x - 3 = 0$ (correct to TWO decimal places) 1.1.3 $ ewline ext{ } ext{√}x^2 - 5 = 2 ext{√}x$ 1.2 Solve for x and y if: 3x - y = 4 and x^2 + 2xy - y^2 = -2 1.3 Given: $f(x) = x^2 + 8x + 16$ 1.3.1 Solve for x if $f(x) > 0$ - NSC Mathematics - Question 1 - 2017 - Paper 1

Question icon

Question 1

Solve-for-x:--1.1.1--$x^2-+-9x-+-14-=-0$----1.1.2--$4x^2-+-9x---3-=-0$--(correct-to-TWO-decimal-places)----1.1.3--$-ewline--ext{--}--ext{√}x^2---5-=-2-ext{√}x$----1.2-Solve-for-x-and-y-if:---3x---y-=-4-----and---x^2-+-2xy---y^2-=--2----1.3-Given:--$f(x)-=-x^2-+-8x-+-16$----1.3.1--Solve-for-x-if--$f(x)->-0$-NSC Mathematics-Question 1-2017-Paper 1.png

Solve for x: 1.1.1 $x^2 + 9x + 14 = 0$ 1.1.2 $4x^2 + 9x - 3 = 0$ (correct to TWO decimal places) 1.1.3 $ ewline ext{ } ext{√}x^2 - 5 = 2 ext{√}x$ 1.... show full transcript

Worked Solution & Example Answer:Solve for x: 1.1.1 $x^2 + 9x + 14 = 0$ 1.1.2 $4x^2 + 9x - 3 = 0$ (correct to TWO decimal places) 1.1.3 $ ewline ext{ } ext{√}x^2 - 5 = 2 ext{√}x$ 1.2 Solve for x and y if: 3x - y = 4 and x^2 + 2xy - y^2 = -2 1.3 Given: $f(x) = x^2 + 8x + 16$ 1.3.1 Solve for x if $f(x) > 0$ - NSC Mathematics - Question 1 - 2017 - Paper 1

Step 1

1.1.1 $x^2 + 9x + 14 = 0$

96%

114 rated

Answer

To solve the quadratic equation x2+9x+14=0x^2 + 9x + 14 = 0, we can attempt to factor it:

\begin{align*} (x + 7)(x + 2) = 0 \end{align*}

Setting each factor to zero gives:

\begin{align*} x + 7 = 0 & \Rightarrow x = -7\\ x + 2 = 0 & \Rightarrow x = -2 \end{align*}

Thus, the solutions are x=7x = -7 or x=2x = -2.

Step 2

1.1.2 $4x^2 + 9x - 3 = 0$

99%

104 rated

Answer

We apply the quadratic formula, where:

x=b±b24ac2a{x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}}

For the equation 4x2+9x3=04x^2 + 9x - 3 = 0, we have a=4a = 4, b=9b = 9, c=3c = -3:

\begin{align*} \Delta & = b^2 - 4ac = 9^2 - 4(4)(-3) = 81 + 48 = 129\\ x & = \frac{-9 \pm \sqrt{129}}{2(4)} = \frac{-9 \pm \sqrt{129}}{8}\end{align*}

Calculating:

12911.36\sqrt{129} ≈ 11.36, hence:

\begin{align*} x & = \frac{-9 + 11.36}{8} ≈ 0.295\\ x & = \frac{-9 - 11.36}{8} ≈ -2.795\end{align*}

Rounded to two decimal places: x0.29,2.54x ≈ 0.29, -2.54.

Step 3

1.1.3 $\sqrt{x^2 - 5} = 2\sqrt{x}$

96%

101 rated

Answer

To solve the equation, we square both sides:

\begin{align*} x^2 - 5 & = 4x \\ \Rightarrow x^2 - 4x - 5 & = 0\end{align*}

Factoring gives:

\begin{align*}(x - 5)(x + 1) = 0\end{align*}

Thus:

\begin{align*}x - 5 = 0 & \Rightarrow x = 5\ x + 1 = 0 & \Rightarrow x = -1\end{align*}

Final solutions: x=5x = 5 or x=1x = -1.

Step 4

1.2 Solve for x and y if: 3x - y = 4 and x^2 + 2xy - y^2 = -2

98%

120 rated

Answer

From the first equation, we express yy:
y=3x4y = 3x - 4.
Substituting into the second equation:

\begin{align*} x^2 + 2x(3x - 4) - (3x - 4)^2 = -2\\ x^2 + 6x^2 - 8x - (9x^2 - 24x + 16) + 2 = 0\end{align*}

Combining terms:

2x2+16x14=0-2x^2 + 16x - 14 = 0 or equivalently:

\begin{align*}x^2 - 8x + 7 = 0\end{align*}

Factoring gives:

\begin{align*}(x - 7)(x - 1) = 0\end{align*}

Thus, the solutions are x=7x = 7 or x=1x = 1. Substituting back: For x=7x = 7:
y=3(7)4=17y = 3(7) - 4 = 17. For x=1x = 1:
y=3(1)4=1y = 3(1) - 4 = -1.
Final ordered pairs: (1,1)(1, -1) and (7,17)(7, 17).

Step 5

1.3.1 Solve for x if $f(x) > 0$

97%

117 rated

Answer

To solve the inequality f(x)=x2+8x+16>0f(x) = x^2 + 8x + 16 > 0, we first note:

\begin{align*}f(x) = (x + 4)^2\end{align*}

As a perfect square, f(x)extisnonnegative.f(x) ext{ is non-negative.} Hence:

\begin{align*}f(x) > 0 & \Rightarrow (x + 4)^2 > 0\\x + 4 & \neq 0\\x & \neq -4\end{align*}

Thus, solutions are all real numbers except x=4x = -4.

Step 6

1.3.2 For which values of p will $f(x) = p$ have TWO unequal negative roots?

97%

121 rated

Answer

We need the quadratic x2+8x+(16p)=0x^2 + 8x + (16 - p) = 0 to have two distinct negative roots. For the roots to be:

  1. Distinct, the discriminant should be positive: Δ=644(16p)>0\Delta = 64 - 4(16 - p) > 0
    Simplifying gives: p<16p < 16.
  2. Negative: The vertex (b2a)=4<0\left(-\frac{b}{2a}\right) = -4 < 0 which is satisfied always.
    For two negative roots, we also require the leading coefficient to be positive. Therefore, the values of p{p} must satisfy: 0<p<160 < p < 16.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;