Photo AI

1.1 Solve for x: 1.1.1 3x² + 5x = 0 1.1.2 4x² + 3x - 5 = 0 (answers correct to TWO decimal places) 1.1.3 (x - 1)² - 9 ≥ 0 1.1.4 5x² - 5 = 0 1.1.5 \( \frac{x}{\sqrt{20 - x}} = 1 \) 1.2 Solve for x and y simultaneously: x + y = 9 and 2x² - y² = 7 1.3 Given: P = (1 - a)(1 + a²)(1 + a¹²) - NSC Mathematics - Question 1 - 2024 - Paper 1

Question icon

Question 1

1.1-Solve-for-x:--1.1.1-3x²-+-5x-=-0--1.1.2-4x²-+-3x---5-=-0-(answers-correct-to-TWO-decimal-places)--1.1.3-(x---1)²---9-≥-0--1.1.4-5x²---5-=-0--1.1.5-\(-\frac{x}{\sqrt{20---x}}-=-1-\)--1.2-Solve-for-x-and-y-simultaneously:--x-+-y-=-9-and-2x²---y²-=-7--1.3-Given:-P-=-(1---a)(1-+-a²)(1-+-a¹²)-NSC Mathematics-Question 1-2024-Paper 1.png

1.1 Solve for x: 1.1.1 3x² + 5x = 0 1.1.2 4x² + 3x - 5 = 0 (answers correct to TWO decimal places) 1.1.3 (x - 1)² - 9 ≥ 0 1.1.4 5x² - 5 = 0 1.1.5 \( \frac{x}{\s... show full transcript

Worked Solution & Example Answer:1.1 Solve for x: 1.1.1 3x² + 5x = 0 1.1.2 4x² + 3x - 5 = 0 (answers correct to TWO decimal places) 1.1.3 (x - 1)² - 9 ≥ 0 1.1.4 5x² - 5 = 0 1.1.5 \( \frac{x}{\sqrt{20 - x}} = 1 \) 1.2 Solve for x and y simultaneously: x + y = 9 and 2x² - y² = 7 1.3 Given: P = (1 - a)(1 + a²)(1 + a¹²) - NSC Mathematics - Question 1 - 2024 - Paper 1

Step 1

1.1.1 3x² + 5x = 0

96%

114 rated

Answer

To solve the equation, we can factor it:

3x(x+53)=03x(x + \frac{5}{3}) = 0

Thus, we find:

  1. ( x = 0 )
  2. ( x = -\frac{5}{3} )

Step 2

1.1.2 4x² + 3x - 5 = 0 (answers correct to TWO decimal places)

99%

104 rated

Answer

Using the quadratic formula, where ( a = 4, b = 3, c = -5 ):

x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}

Plugging in the values gives:

x=3±3244(5)24x = \frac{{-3 \pm \sqrt{{3^2 - 4 \cdot 4 \cdot (-5)}}}}{{2 \cdot 4}}

Calculating the discriminant:

=9+80=89= \sqrt{{9 + 80}} = \sqrt{89}

Thus:

  1. ( x = \frac{{-3 + \sqrt{89}}}{8} \approx 0.80 )
  2. ( x = \frac{{-3 - \sqrt{89}}}{8} \approx -1.55 )

Step 3

1.1.3 (x - 1)² - 9 ≥ 0

96%

101 rated

Answer

Rearranging gives:

(x1)29(x - 1)² ≥ 9

Taking square roots:

x13|x - 1| ≥ 3

Thus, we have two cases:

  1. ( x - 1 ≥ 3 \Rightarrow x ≥ 4 )
  2. ( x - 1 ≤ -3 \Rightarrow x ≤ -2 )

Final solutions are: ( x ≤ -2 ) or ( x ≥ 4 )

Step 4

1.1.4 5x² - 5 = 0

98%

120 rated

Answer

We can factor this equation:

5(x21)=05(x² - 1) = 0

This means:

  1. ( x = 0 )
  2. ( x² = 1 \Rightarrow x = 1 \text{ or } x = -1 )

Step 5

1.1.5 \( \frac{x}{\sqrt{20 - x}} = 1 \)

97%

117 rated

Answer

To solve this, square both sides:

x2=20xx² = 20 - x

Rearranging gives:

x2+x20=0x² + x - 20 = 0

Factoring yields:

(x+5)(x4)=0(x + 5)(x - 4) = 0

Thus, ( x = -5 ) or ( x = 4 )

Step 6

1.2 Solve for x and y simultaneously: x + y = 9 and 2x² - y² = 7

97%

121 rated

Answer

From the first equation, express y:

y=9xy = 9 - x

Substituting into the second equation:

2x2(9x)2=72x² - (9 - x)² = 7

Expanding gives:

2x2(8118x+x2)=72x² - (81 - 18x + x²) = 7

Combining like terms results in:

x2+18x88=0x² + 18x - 88 = 0

Using the quadratic formula results in potential x-values: ( x = 5 ) or ( x = -22 ). Substituting back gives corresponding y-values: ( y = 4 ) or ( y = 31 ).

Step 7

1.3 Given: P = (1 - a)(1 + a²)(1 + a¹²). Determine the value of P × T in terms of a.

96%

114 rated

Answer

Calculating P:
( P = (1 - a)(1 + a²)(1 + a¹²) )
Expand P to find: ( P = (1 - a)(1 + a² + a¹² + a^{14}) )
Next, calculate T: ( T = (1 + a)(1 + a^{12}) )
Combining, we find: ( P \times T = (1 - a)(1 + a)(1 + a²)(1 + a^{12}) )

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;