Photo AI

Los op vir $x$: 1.1.1 $(3x-1)(x+4) = 0$ 1.1.2 $2x^2 + 9x - 14 = 0$ (korrek tot TWEE decimal plekke) 1.1.3 $ rac{ ext{√}3 - 26}{x} = 3$ 1.1.4 $(x-1)(x-4) = x + 11$ 1.2 Vereenidig volledig: $ rac{ ext{√}16x^2 - ext{√}25x^2}{ ext{√}x}$ 1.3 Los geliktydig op vir $x$ en $y$: $xy = 9$ en $-2y -3 = 0$ 1.4 Bewys dat $x^2 + 2xy + 2y^2$ nie negatief vir $x, y ext{ in } R$ kan wees nie. - NSC Mathematics - Question 1 - 2018 - Paper 1

Question icon

Question 1

Los-op-vir-$x$:--1.1.1-$(3x-1)(x+4)-=-0$--1.1.2-$2x^2-+-9x---14-=-0$-(korrek-tot-TWEE-decimal-plekke)--1.1.3-$-rac{-ext{√}3---26}{x}-=-3$--1.1.4-$(x-1)(x-4)-=-x-+-11$--1.2-Vereenidig-volledig:--$-rac{-ext{√}16x^2----ext{√}25x^2}{-ext{√}x}$--1.3-Los-geliktydig-op-vir-$x$-en-$y$:--$xy-=-9$-en-$-2y--3-=-0$--1.4-Bewys-dat-$x^2-+-2xy-+-2y^2$-nie-negatief-vir-$x,-y--ext{-in-}-R$-kan-wees-nie.-NSC Mathematics-Question 1-2018-Paper 1.png

Los op vir $x$: 1.1.1 $(3x-1)(x+4) = 0$ 1.1.2 $2x^2 + 9x - 14 = 0$ (korrek tot TWEE decimal plekke) 1.1.3 $ rac{ ext{√}3 - 26}{x} = 3$ 1.1.4 $(x-1)(x-4) = x + 11... show full transcript

Worked Solution & Example Answer:Los op vir $x$: 1.1.1 $(3x-1)(x+4) = 0$ 1.1.2 $2x^2 + 9x - 14 = 0$ (korrek tot TWEE decimal plekke) 1.1.3 $ rac{ ext{√}3 - 26}{x} = 3$ 1.1.4 $(x-1)(x-4) = x + 11$ 1.2 Vereenidig volledig: $ rac{ ext{√}16x^2 - ext{√}25x^2}{ ext{√}x}$ 1.3 Los geliktydig op vir $x$ en $y$: $xy = 9$ en $-2y -3 = 0$ 1.4 Bewys dat $x^2 + 2xy + 2y^2$ nie negatief vir $x, y ext{ in } R$ kan wees nie. - NSC Mathematics - Question 1 - 2018 - Paper 1

Step 1

1.1.1 Solve $(3x-1)(x+4) = 0$

96%

114 rated

Answer

To solve this equation, set each factor to zero:

  1. 3x1=03x - 1 = 0

    Thus, x = rac{1}{3}.

  2. x+4=0x + 4 = 0

    Thus, x=4x = -4.

The solutions are x = rac{1}{3} and x=4x = -4.

Step 2

1.1.2 Solve $2x^2 + 9x - 14 = 0$ (korrek tot TWEE decimal plekke)

99%

104 rated

Answer

Using the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
where a=2a = 2, b=9b = 9, and c=14c = -14.

Substituting these values:

x=9±924(2)(14)2(2)x = \frac{-9 \pm \sqrt{9^2 - 4(2)(-14)}}{2(2)}

Calculate the discriminant:

=81+112=193= 81 + 112 = 193

So we have:

x=9±1934x = \frac{-9 \pm \sqrt{193}}{4}

Calculating values:

  1. x=9+19341,22x = \frac{-9 + \sqrt{193}}{4} \approx 1,22.
  2. x=919345,72x = \frac{-9 - \sqrt{193}}{4} \approx -5,72.

Step 3

1.1.3 Solve $ rac{\text{√}3 - 26}{x} = 3$

96%

101 rated

Answer

Multiply both sides by xx: 326=3x\text{√}3 - 26 = 3x

Thus, rearranging gives: x=3263x = \frac{\text{√}3 - 26}{3}.

Step 4

1.1.4 Solve $(x-1)(x-4) = x + 11$

98%

120 rated

Answer

First, expand the left side:

(x1)(x4)=x24xx+4=x25x+4(x-1)(x-4) = x^2 - 4x - x + 4 \\ = x^2 - 5x + 4

Set the equation to zero: x25x+4x11=0=x26x7=0x^2 - 5x + 4 - x - 11 = 0 \\ = x^2 - 6x - 7 = 0

Now, factor the quadratic: (x7)(x+1)=0(x-7)(x+1) = 0 Thus, solutions are x=7x = 7 and x=1x = -1.

Step 5

1.2 Vereenidig volledig: $ rac{\text{√}16x^2 - \text{√}25x^2}{\text{√}x}$

97%

117 rated

Answer

First, simplify the expression:

Substituting values, we have: 16x2=4xand √25x2=5x\text{√}16x^2 = 4x \\ \text{and } \text{√}25x^2 = 5x Thus: =4x5xx=xx=x= \frac{4x - 5x}{\text{√}x} = \frac{-x}{\text{√}x} = -\text{√}x.

Step 6

1.3 Los geliktydig op vir $x$ en $y$

97%

121 rated

Answer

From 2y3=0-2y - 3 = 0, we can express yy:

  1. y=32y = -\frac{3}{2}.

Now, substitute yy into xy=9xy = 9: x(32)=9=x=6extory=3x(-\frac{3}{2}) = 9 \\ = x = -6 ext{ or } y = -3.

Step 7

1.4 Bewys dat $x^2 + 2xy + 2y^2$ nie negatief vir $x, y$ kan wees nie.

96%

114 rated

Answer

The expression x2+2xy+2y2x^2 + 2xy + 2y^2 can be rearranged.

This can be represented as non-negative since:

  1. x20x^2 \ge 0.
  2. y20y^2 \ge 0.
  3. Therefore, (x+y)20(x + y)^2 \ge 0.

Thus it shows that x2+2xy+2y20x^2 + 2xy + 2y^2 \ge 0.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;