Photo AI

Los op vir $x$: 1.1.1 $x^2 - x - 20 = 0$ 1.1.2 $3x^2 - 2x - 6 = 0$ (korrek tot TWEE desimale sifers) 1.1.3 $(x - 1)^2 > 9$ 1.1.4 $2/ oot{x}{6} + 2 = x$ Los gelyktydig op vir $x$ en $y$: 1.2 $4x + y = 2$ en $4x + y^2 = 8$ Indien dit gegee word dat $2^x imes 3^y = 24^2$, bepaal die numeriese waarde van $x - y$. - NSC Mathematics - Question 1 - 2021 - Paper 1

Question icon

Question 1

Los-op-vir-$x$:--1.1.1-$x^2---x---20-=-0$--1.1.2-$3x^2---2x---6-=-0$-(korrek-tot-TWEE-desimale-sifers)--1.1.3-$(x---1)^2->-9$--1.1.4-$2/-oot{x}{6}-+-2-=-x$---Los-gelyktydig-op-vir-$x$-en-$y$:--1.2-$4x-+-y-=-2$-en-$4x-+-y^2-=-8$---Indien-dit-gegee-word-dat-$2^x--imes-3^y-=-24^2$,-bepaal-die-numeriese-waarde-van-$x---y$.-NSC Mathematics-Question 1-2021-Paper 1.png

Los op vir $x$: 1.1.1 $x^2 - x - 20 = 0$ 1.1.2 $3x^2 - 2x - 6 = 0$ (korrek tot TWEE desimale sifers) 1.1.3 $(x - 1)^2 > 9$ 1.1.4 $2/ oot{x}{6} + 2 = x$ Los gel... show full transcript

Worked Solution & Example Answer:Los op vir $x$: 1.1.1 $x^2 - x - 20 = 0$ 1.1.2 $3x^2 - 2x - 6 = 0$ (korrek tot TWEE desimale sifers) 1.1.3 $(x - 1)^2 > 9$ 1.1.4 $2/ oot{x}{6} + 2 = x$ Los gelyktydig op vir $x$ en $y$: 1.2 $4x + y = 2$ en $4x + y^2 = 8$ Indien dit gegee word dat $2^x imes 3^y = 24^2$, bepaal die numeriese waarde van $x - y$. - NSC Mathematics - Question 1 - 2021 - Paper 1

Step 1

1.1.1 $x^2 - x - 20 = 0$

96%

114 rated

Answer

To solve this quadratic equation, we can factor it:

(x5)(x+4)=0(x - 5)(x + 4) = 0

Setting each factor to zero gives:

x5=0x=5x - 5 = 0 \Rightarrow x = 5 x+4=0x=4x + 4 = 0 \Rightarrow x = -4

Thus, the solutions are x=5x = 5 and x=4x = -4.

Step 2

1.1.2 $3x^2 - 2x - 6 = 0$ (korrek tot TWEE desimale sifers)

99%

104 rated

Answer

For this equation, we will use the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Here, a=3a = 3, b=2b = -2, and c=6c = -6.

So,

x=2±(2)24(3)(6)2(3)x = \frac{2 \pm \sqrt{(-2)^2 - 4(3)(-6)}}{2(3)} x=2±4+726x = \frac{2 \pm \sqrt{4 + 72}}{6} x=2±766x = \frac{2 \pm \sqrt{76}}{6} x=2±2196x = \frac{2 \pm 2\sqrt{19}}{6} x=1±193x = \frac{1 \pm \sqrt{19}}{3}

The two decimal approximations yield:

x1.12andx1.79.x \approx 1.12 \quad \text{and} \quad x \approx -1.79.

Step 3

1.1.3 $(x - 1)^2 > 9$

96%

101 rated

Answer

To solve this inequality, we start by rewriting it:

(x1)2>9(x - 1)^2 > 9

Taking the square root of both sides, we have two cases:

x1>3x>4x - 1 > 3 \Rightarrow x > 4 x1<3x<2x - 1 < -3 \Rightarrow x < -2

Thus, the solution to this inequality is:

x<2orx>4x < -2 \quad \text{or} \quad x > 4

Step 4

1.1.4 $2/ oot{x}{6} + 2 = x$

98%

120 rated

Answer

First, we isolate the surd:

2x+2=x\frac{2}{\sqrt{x}} + 2 = x

Rearranging this gives:

2x=x2\frac{2}{\sqrt{x}} = x - 2

Now, cross-multiplying leads to:

2=(x2)x2 = (x - 2) \sqrt{x}

Squaring both sides results in:

4=(x2)2x4 = (x - 2)^2 x

Expanding and rearranging will yield the solutions for xx.

Step 5

1.2 $4x + y = 2$ en $4x + y^2 = 8$

97%

117 rated

Answer

From the first equation, we can express yy in terms of xx:

y=24xy = 2 - 4x

Substituting this into the second equation gives:

4x+(24x)2=84x + (2 - 4x)^2 = 8

Expanding the quadratic results in:

4x+(416x+16x2)=84x + (4 - 16x + 16x^2) = 8

Simplifying this leads to a quadratic equation in terms of xx. Solve for xx to find the corresponding yy.

Step 6

1.3 $2^x imes 3^y = 24^2$

97%

121 rated

Answer

We can express 2424 as 24=23imes3124 = 2^3 imes 3^1, so:

242=(23imes31)2=26imes3224^2 = (2^3 imes 3^1)^2 = 2^6 imes 3^2

Equating the exponents gives:

x=6 and y=2x = 6 \text{ and } y = 2

Finally, we find:

xy=62=4.x - y = 6 - 2 = 4.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;