1.1 Los op vir $x$:
1.1.1 $x^2 - 2x - 24 = 0$
1.1.2 $2x^2 - 3x - 3 = 0$ (korrek tot TWEE desimale syfers)
1.1.3 $x^2 + 5x ext{ ≤ } 4$
1.1.4 $\sqrt{28 - 2 - x} = 2$
1.2 Los gelijktydig vir $x$ en $y$ op in:
$2y = 3 + x$ en $2y + 7 = x^2 + 4y^2$
1.3 Die wortels van 'n vergelyking is $y = \frac{-n \pm \sqrt{n^2 - 4mp}}{2m}$, waar $m$ en $p$ positiewe reële getalle is - NSC Mathematics - Question 1 - 2021 - Paper 1

Question 1

1.1 Los op vir $x$:
1.1.1 $x^2 - 2x - 24 = 0$
1.1.2 $2x^2 - 3x - 3 = 0$ (korrek tot TWEE desimale syfers)
1.1.3 $x^2 + 5x ext{ ≤ } 4$
1.1.4 $\sqrt{28 - 2 ... show full transcript
Worked Solution & Example Answer:1.1 Los op vir $x$:
1.1.1 $x^2 - 2x - 24 = 0$
1.1.2 $2x^2 - 3x - 3 = 0$ (korrek tot TWEE desimale syfers)
1.1.3 $x^2 + 5x ext{ ≤ } 4$
1.1.4 $\sqrt{28 - 2 - x} = 2$
1.2 Los gelijktydig vir $x$ en $y$ op in:
$2y = 3 + x$ en $2y + 7 = x^2 + 4y^2$
1.3 Die wortels van 'n vergelyking is $y = \frac{-n \pm \sqrt{n^2 - 4mp}}{2m}$, waar $m$ en $p$ positiewe reële getalle is - NSC Mathematics - Question 1 - 2021 - Paper 1
1.1.1 $x^2 - 2x - 24 = 0$

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To solve the quadratic equation, we can factor it:
x2−2x−24=(x−6)(x+4)=0
This gives the solutions:
x=6 or x=−4
Thus, the solutions are x=6 and x=−4.
1.1.2 $2x^2 - 3x - 3 = 0$ (korrek tot TWEE desimale syfers)

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Using the quadratic formula:
x=2a−b±b2−4ac
where a=2, b=−3, and c=−3. Substituting:
= \frac{3 \pm \sqrt{9 + 24}}{4}
= \frac{3 \pm \sqrt{33}}{4}$$
Calculating the two solutions:
$$x_1 = \frac{3 + \sqrt{33}}{4} \approx 2.19
\text{and}
x_2 = \frac{3 - \sqrt{33}}{4} \approx -0.69$$.1.1.3 $x^2 + 5x \text{ ≤ } 4$

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Rearranging the inequality gives:
x2+5x−4≤0
Next, we factor or use the quadratic formula to find the critical points:
= \frac{-5 \pm \sqrt{25 + 16}}{2}
= \frac{-5 \pm \sqrt{41}}{2}$$
The critical values are approximately:
$$x_1 \approx -4 \text{ and } x_2 \approx -1$$
Thus, the solution set is:
$$x \in [-4, -1]$$.1.1.4 $\sqrt{28 - 2 - x} = 2$

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
First, we square both sides:
28−2−x=4
Rearranging gives:
x=28−2−4=22
Thus, the solution is:
x=22.
1.2 Los gelijktydig vir $x$ en $y$ op in: $2y = 3 + x$ en $2y + 7 = x^2 + 4y^2$

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
From the first equation:
2y=3+x⇒y=23+x
Substituting into the second equation:
2(23+x)+7=x2+4(23+x)2
This leads to a combined equation where x and y can be solved simultaneously.
1.3 Bewys dat $x
eq nie-reële getal is.

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Given the roots of the equation:
y=2m−n±n2−4mp
Since both m and p are positive, we know that n2−4mp<0 results in non-real roots. Hence:
Δ<0⇒x is a non-real number.
Join the NSC students using SimpleStudy...
97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;