Photo AI

1.1 Los op vir $x$: 1.1.1 $x^2 - 2x - 24 = 0$ 1.1.2 $2x^2 - 3x - 3 = 0$ (korrek tot TWEE desimale syfers) 1.1.3 $x^2 + 5x ext{ ≤ } 4$ 1.1.4 $\sqrt{28 - 2 - x} = 2$ 1.2 Los gelijktydig vir $x$ en $y$ op in: $2y = 3 + x$ en $2y + 7 = x^2 + 4y^2$ 1.3 Die wortels van 'n vergelyking is $y = \frac{-n \pm \sqrt{n^2 - 4mp}}{2m}$, waar $m$ en $p$ positiewe reële getalle is - NSC Mathematics - Question 1 - 2021 - Paper 1

Question icon

Question 1

1.1-Los-op-vir-$x$:--1.1.1-$x^2---2x---24-=-0$----1.1.2-$2x^2---3x---3-=-0$-(korrek-tot-TWEE-desimale-syfers)----1.1.3-$x^2-+-5x--ext{-≤-}-4$----1.1.4-$\sqrt{28---2---x}-=-2$----1.2-Los-gelijktydig-vir-$x$-en-$y$-op-in:--$2y-=-3-+-x$-en-$2y-+-7-=-x^2-+-4y^2$----1.3-Die-wortels-van-'n-vergelyking-is-$y-=-\frac{-n-\pm-\sqrt{n^2---4mp}}{2m}$,-waar-$m$-en-$p$-positiewe-reële-getalle-is-NSC Mathematics-Question 1-2021-Paper 1.png

1.1 Los op vir $x$: 1.1.1 $x^2 - 2x - 24 = 0$ 1.1.2 $2x^2 - 3x - 3 = 0$ (korrek tot TWEE desimale syfers) 1.1.3 $x^2 + 5x ext{ ≤ } 4$ 1.1.4 $\sqrt{28 - 2 ... show full transcript

Worked Solution & Example Answer:1.1 Los op vir $x$: 1.1.1 $x^2 - 2x - 24 = 0$ 1.1.2 $2x^2 - 3x - 3 = 0$ (korrek tot TWEE desimale syfers) 1.1.3 $x^2 + 5x ext{ ≤ } 4$ 1.1.4 $\sqrt{28 - 2 - x} = 2$ 1.2 Los gelijktydig vir $x$ en $y$ op in: $2y = 3 + x$ en $2y + 7 = x^2 + 4y^2$ 1.3 Die wortels van 'n vergelyking is $y = \frac{-n \pm \sqrt{n^2 - 4mp}}{2m}$, waar $m$ en $p$ positiewe reële getalle is - NSC Mathematics - Question 1 - 2021 - Paper 1

Step 1

1.1.1 $x^2 - 2x - 24 = 0$

96%

114 rated

Answer

To solve the quadratic equation, we can factor it:

x22x24=(x6)(x+4)=0x^2 - 2x - 24 = (x - 6)(x + 4) = 0
This gives the solutions:

x=6 or x=4x = 6 \text{ or } x = -4
Thus, the solutions are x=6x = 6 and x=4x = -4.

Step 2

1.1.2 $2x^2 - 3x - 3 = 0$ (korrek tot TWEE desimale syfers)

99%

104 rated

Answer

Using the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
where a=2a = 2, b=3b = -3, and c=3c = -3. Substituting:

= \frac{3 \pm \sqrt{9 + 24}}{4} = \frac{3 \pm \sqrt{33}}{4}$$ Calculating the two solutions: $$x_1 = \frac{3 + \sqrt{33}}{4} \approx 2.19 \text{and} x_2 = \frac{3 - \sqrt{33}}{4} \approx -0.69$$.

Step 3

1.1.3 $x^2 + 5x \text{ ≤ } 4$

96%

101 rated

Answer

Rearranging the inequality gives:

x2+5x40x^2 + 5x - 4 \leq 0
Next, we factor or use the quadratic formula to find the critical points:

= \frac{-5 \pm \sqrt{25 + 16}}{2} = \frac{-5 \pm \sqrt{41}}{2}$$ The critical values are approximately: $$x_1 \approx -4 \text{ and } x_2 \approx -1$$ Thus, the solution set is: $$x \in [-4, -1]$$.

Step 4

1.1.4 $\sqrt{28 - 2 - x} = 2$

98%

120 rated

Answer

First, we square both sides:

282x=428 - 2 - x = 4
Rearranging gives:

x=2824=22x = 28 - 2 - 4 = 22
Thus, the solution is:

x=22x = 22.

Step 5

1.2 Los gelijktydig vir $x$ en $y$ op in: $2y = 3 + x$ en $2y + 7 = x^2 + 4y^2$

97%

117 rated

Answer

From the first equation:

2y=3+xy=3+x22y = 3 + x \Rightarrow y = \frac{3 + x}{2}
Substituting into the second equation:

2(3+x2)+7=x2+4(3+x2)22\left(\frac{3 + x}{2}\right) + 7 = x^2 + 4\left(\frac{3 + x}{2}\right)^2
This leads to a combined equation where xx and yy can be solved simultaneously.

Step 6

1.3 Bewys dat $x eq nie-reële getal is.

97%

121 rated

Answer

Given the roots of the equation:

y=n±n24mp2my = \frac{-n \pm \sqrt{n^2 - 4mp}}{2m}
Since both mm and pp are positive, we know that n24mp<0n^2 - 4mp < 0 results in non-real roots. Hence:

Δ<0x is a non-real number.\Delta < 0 \Rightarrow x \text{ is a non-real number.}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;