Photo AI

8.1 Determine $f'(x)$ from first principles if it is given that $f(x) = 3x^{2}$ - NSC Mathematics - Question 8 - 2021 - Paper 1

Question icon

Question 8

8.1-Determine-$f'(x)$-from-first-principles-if-it-is-given-that-$f(x)-=-3x^{2}$-NSC Mathematics-Question 8-2021-Paper 1.png

8.1 Determine $f'(x)$ from first principles if it is given that $f(x) = 3x^{2}$. 8.2 Determine: 8.2.1 $f'(x)$ if $f(x) = x^{2} - 3 + \frac{9}{x^{2}}$ 8.2.2 $g'... show full transcript

Worked Solution & Example Answer:8.1 Determine $f'(x)$ from first principles if it is given that $f(x) = 3x^{2}$ - NSC Mathematics - Question 8 - 2021 - Paper 1

Step 1

Determine $f'(x)$ from first principles if it is given that $f(x) = 3x^{2}$

96%

114 rated

Answer

To find the derivative f(x)f'(x) from first principles using the definition:

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0}\frac{f(x+h) - f(x)}{h}

Substituting f(x)=3x2f(x) = 3x^{2}:

f(x)=limh03(x+h)23x2hf'(x) = \lim_{h \to 0}\frac{3(x+h)^{2} - 3x^{2}}{h}

Expanding the expression:

f(x)=limh03(x2+2xh+h2)3x2hf'(x) = \lim_{h \to 0}\frac{3(x^{2} + 2xh + h^{2}) - 3x^{2}}{h}

Simplifying:

f(x)=limh03(2xh+h2)hf'(x) = \lim_{h \to 0}\frac{3(2xh + h^{2})}{h}

Cancelling hh from the numerator and denominator:

f(x)=limh03(2x+h)=6xf'(x) = \lim_{h \to 0}3(2x + h) = 6x

Step 2

Determine $f'(x)$ if $f(x) = x^{2} - 3 + \frac{9}{x^{2}}$

99%

104 rated

Answer

To find the derivative, use the power rule and the quotient rule as needed:

  1. Differentiate f(x)f(x): f(x)=ddx(x2)ddx(3)+ddx(9x2)f'(x) = \frac{d}{dx}(x^{2}) - \frac{d}{dx}(3) + \frac{d}{dx}\left(\frac{9}{x^{2}}\right)
  2. This yields: f(x)=2x+09x3f'(x) = 2x + 0 - 9x^{-3} Hence, f(x)=2x9x3f'(x) = 2x - \frac{9}{x^{3}}

Step 3

Determine $g'(x)$ if $g(x) = (\sqrt{x+3})(\sqrt{x-1})$

96%

101 rated

Answer

To find the derivative, use the product rule:

Let: u=x+3u = \sqrt{x+3}
v=x1v = \sqrt{x-1}
Then using the product rule g(x)=uv+uvg'(x) = u'v + uv':

  1. Calculate uu': u=12x+3u' = \frac{1}{2\sqrt{x+3}}

  2. Calculate vv': v=12x1v' = \frac{1}{2\sqrt{x-1}}

  3. Now apply the product rule: g(x)=(12x+3)x1+x+3(12x1)g'(x) = \left(\frac{1}{2\sqrt{x+3}}\right)\sqrt{x-1} + \sqrt{x+3}\left(\frac{1}{2\sqrt{x-1}}\right) Thus, g(x)=x12x+3+x+32x1g'(x) = \frac{\sqrt{x-1}}{2\sqrt{x+3}} + \frac{\sqrt{x+3}}{2\sqrt{x-1}}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;