Photo AI

Bepaal $f' (x)$ vanuit eerste beginsels as $f (x) = x^2 - 5$ - NSC Mathematics - Question 7 - 2017 - Paper 1

Question icon

Question 7

Bepaal-$f'-(x)$-vanuit-eerste-beginsels-as-$f-(x)-=-x^2---5$-NSC Mathematics-Question 7-2017-Paper 1.png

Bepaal $f' (x)$ vanuit eerste beginsels as $f (x) = x^2 - 5$. Bepaal die afgeleide van: $g(x) = 5x^2 - \frac{2x}{x^3}$. Gegee: $h(x) = a^x, x > 0$. Bepaal die waar... show full transcript

Worked Solution & Example Answer:Bepaal $f' (x)$ vanuit eerste beginsels as $f (x) = x^2 - 5$ - NSC Mathematics - Question 7 - 2017 - Paper 1

Step 1

Bepaal $f' (x)$ vanuit eerste beginsels

96%

114 rated

Answer

To find the derivative f(x)f'(x) using first principles, we start with the definition of the derivative:

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}

Substituting f(x)=x25f(x) = x^2 - 5, we have:

  1. Calculate f(x+h)f(x+h): f(x+h)=(x+h)25=x2+2xh+h25f(x+h) = (x+h)^2 - 5 = x^2 + 2xh + h^2 - 5

  2. Now compute: f(x+h)f(x)=(x2+2xh+h25)(x25)=2xh+h2f(x+h) - f(x) = (x^2 + 2xh + h^2 - 5) - (x^2 - 5) = 2xh + h^2

  3. Substitute this back into the derivative definition: f(x)=limh02xh+h2hf'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h}

  4. Simplifying gives: f(x)=limh0(2x+h)f'(x) = \lim_{h \to 0} (2x + h) As hh approaches 0, we find: f(x)=2xf'(x) = 2x

Step 2

Bepaal die afgeleide van: $g(x) = 5x^2 - \frac{2x}{x^3}$

99%

104 rated

Answer

To find the derivative g(x)g'(x), we first simplify the function:

  1. Rewrite the function: g(x)=5x22xx3=5x22x2g(x) = 5x^2 - 2x \cdot x^{-3} = 5x^2 - 2x^{-2}

  2. Differentiate each term: g(x)=10x(2)x3=10x+2x3g'(x) = 10x - (-2)x^{-3} = 10x + \frac{2}{x^3}

Thus, the derivative is: g(x)=10x+2x3g'(x) = 10x + \frac{2}{x^3}

Step 3

Bepaal die waarde van $a$ as gegee word dat $h' (8) = h' (4)$

96%

101 rated

Answer

We start with the function: h(x)=axh(x) = a^x

The derivative of this function is: h(x)=axln(a)h'(x) = a^x \ln(a)

Setting up the condition: h(8)=h(4)h'(8) = h'(4)

Substituting the expressions: a8ln(a)=a4ln(a)a^8 \ln(a) = a^4 \ln(a)

Assuming extln(a)eq0 ext{ln(a)} eq 0, we can simplify by dividing both sides: a8=a4a^8 = a^4

This implies:

ightarrow a^4 = 1$$ Therefore: $$a = 1 ext{ or } a = -1 ext{ (discarded since } a > 0).$$ Thus, the final value of $a$ is: $$a = 1.$$

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;