Photo AI

Solve for x: 1.1.1 $x^2 + 9x + 14 = 0$ 1.1.2 $4x^2 + 9x - 3 = 0$ (correct to TWO decimal places) 1.1.3 $ orall x, ext{ } ext{ if } ext{ } ext{ } ext{ } ext{ } \sqrt{x^2 - 5} = 2 ext{ } Solve for x and y if: 3x - y = 4 $x^2 + 2xy - y^2 = -2$ Given: $f(x) = x^2 + 8x + 16$ 1.3.1 Solve for x if $f(x) > 0$ 1.3.2 For which values of p will $f(x) = p$ have TWO unequal negative roots? - NSC Mathematics - Question 1 - 2017 - Paper 1

Question icon

Question 1

Solve-for-x:--1.1.1--$x^2-+-9x-+-14-=-0$----1.1.2--$4x^2-+-9x---3-=-0$--(correct-to-TWO-decimal-places)----1.1.3--$-orall-x,--ext{-}--ext{-if-}--ext{-}--ext{-}--ext{-}--ext{-}-\sqrt{x^2---5}-=-2-ext{-}----Solve-for-x-and-y-if:---3x---y-=-4---$x^2-+-2xy---y^2-=--2$----Given:-$f(x)-=-x^2-+-8x-+-16$----1.3.1--Solve-for-x-if-$f(x)->-0$----1.3.2-For-which-values-of-p-will-$f(x)-=-p$-have-TWO-unequal-negative-roots?-NSC Mathematics-Question 1-2017-Paper 1.png

Solve for x: 1.1.1 $x^2 + 9x + 14 = 0$ 1.1.2 $4x^2 + 9x - 3 = 0$ (correct to TWO decimal places) 1.1.3 $ orall x, ext{ } ext{ if } ext{ } ext{ } ext{... show full transcript

Worked Solution & Example Answer:Solve for x: 1.1.1 $x^2 + 9x + 14 = 0$ 1.1.2 $4x^2 + 9x - 3 = 0$ (correct to TWO decimal places) 1.1.3 $ orall x, ext{ } ext{ if } ext{ } ext{ } ext{ } ext{ } \sqrt{x^2 - 5} = 2 ext{ } Solve for x and y if: 3x - y = 4 $x^2 + 2xy - y^2 = -2$ Given: $f(x) = x^2 + 8x + 16$ 1.3.1 Solve for x if $f(x) > 0$ 1.3.2 For which values of p will $f(x) = p$ have TWO unequal negative roots? - NSC Mathematics - Question 1 - 2017 - Paper 1

Step 1

1.1.1 $x^2 + 9x + 14 = 0$

96%

114 rated

Answer

To solve for xx, we will use the quadratic formula, which is given by:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Here, a=1a = 1, b=9b = 9, and c=14c = 14.

Calculating the discriminant: D=b24ac=924114=8156=25D = b^2 - 4ac = 9^2 - 4 \cdot 1 \cdot 14 = 81 - 56 = 25

Now applying the quadratic formula: x=9±252=9±52x = \frac{-9 \pm \sqrt{25}}{2} = \frac{-9 \pm 5}{2}

This results in:

  1. x=9+52=42=2x = \frac{-9 + 5}{2} = \frac{-4}{2} = -2
  2. x=952=142=7x = \frac{-9 - 5}{2} = \frac{-14}{2} = -7

Thus, the solutions are x=2x = -2 or x=7x = -7.

Step 2

1.1.2 $4x^2 + 9x - 3 = 0$ (correct to TWO decimal places)

99%

104 rated

Answer

For this quadratic equation, we again use the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Setting a=4a = 4, b=9b = 9, and c=3c = -3, the discriminant is:

D=9244(3)=81+48=129D = 9^2 - 4 \cdot 4 \cdot (-3) = 81 + 48 = 129

Now applying the formula: x=9±1298x = \frac{-9 \pm \sqrt{129}}{8}

Calculating the two values:

  1. x=9+12980.29x = \frac{-9 + \sqrt{129}}{8} \approx 0.29
  2. x=912982.54x = \frac{-9 - \sqrt{129}}{8} \approx -2.54

Hence, the solutions are approximately x0.29x \approx 0.29 and x2.54x \approx -2.54.

Step 3

1.1.3 $ orall x,\sqrt{x^2 - 5} = 2\sqrt{x}$

96%

101 rated

Answer

To solve this equation, we start by squaring both sides:

x25=4xx^2 - 5 = 4x

Rearranging gives:

x24x5=0x^2 - 4x - 5 = 0

Now we can factor this as: (x5)(x+1)=0(x - 5)(x + 1) = 0

Thus, the solutions are:

  1. x=5x = 5
  2. x=1x = -1

Step 4

1.2 Solve for x and y if: 3x - y = 4 and $x^2 + 2xy - y^2 = -2$

98%

120 rated

Answer

From the first equation, we can express yy in terms of xx:

y=3x4y = 3x - 4

Now substituting this expression for yy into the second equation:

x2+2x(3x4)(3x4)2=2x^2 + 2x(3x - 4) - (3x - 4)^2 = -2

Expanding gives:

x2+6x28x(9x224x+16)=2x^2 + 6x^2 - 8x - (9x^2 - 24x + 16) = -2 2x2+16x14=0-2x^2 + 16x - 14 = 0

Dividing everything by -2 leads to: x28x+7=0x^2 - 8x + 7 = 0

Factoring: (x7)(x1)=0(x - 7)(x - 1) = 0

Thus, x=7x = 7 or x=1x = 1.

For x=7x = 7: y=3(7)4=17y = 3(7) - 4 = 17.
For x=1x = 1: y=3(1)4=1y = 3(1) - 4 = -1.

Therefore, the two pairs are (7,17)(7, 17) and (1,1)(1, -1).

Step 5

1.3.1 Solve for x if $f(x) > 0$

97%

117 rated

Answer

The function f(x)=x2+8x+16f(x) = x^2 + 8x + 16 can be rewritten as:

f(x)=(x+4)2f(x) = (x + 4)^2

This expression is always non-negative because a squared term is non-negative. Thus, f(x)>0f(x) > 0 when: x+40x + 4 \neq 0
or
x4x \neq -4

Therefore, f(x)>0f(x) > 0 for: xR,x4x \in \mathbb{R}, x \neq -4.

Step 6

1.3.2 For which values of p will $f(x) = p$ have TWO unequal negative roots?

97%

121 rated

Answer

Setting f(x)=pf(x) = p, we get: x2+8x+16p=0x^2 + 8x + 16 - p = 0

For this quadratic to have two unequal negative roots, the following conditions must hold:

  1. The discriminant must be positive:
    D>0824(1)(16p)>0D > 0 \Rightarrow 8^2 - 4(1)(16 - p) > 0
    Simplifying gives: 6464+4p>0p>064 - 64 + 4p > 0 \Rightarrow p > 0

  2. The vertex of the parabola, given by x=b2a=82=4x = -\frac{b}{2a} = -\frac{8}{2} = -4, must be less than 0, which is always satisfied.

  3. In order for both roots to be negative: The condition also requires: 4p<64p<164p < 64 \Rightarrow p < 16

Thus, we have: 0<p<160 < p < 16

This means that pp must be within the interval (0,16)(0, 16).

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;