Photo AI

In die diagram is die vergelyking van lyn AF y = -x - 11 - NSC Mathematics - Question 3 - 2023 - Paper 2

Question icon

Question 3

In-die-diagram-is-die-vergelyking-van-lyn-AF--y-=--x---11-NSC Mathematics-Question 3-2023-Paper 2.png

In die diagram is die vergelyking van lyn AF y = -x - 11 . B, 'n punt op die x-as, is die middelpunt van die reguylyn wat A(-1 ; t) en C verbind. Die inklinasiehoek... show full transcript

Worked Solution & Example Answer:In die diagram is die vergelyking van lyn AF y = -x - 11 - NSC Mathematics - Question 3 - 2023 - Paper 2

Step 1

3.1.1 Waarde van t

96%

114 rated

Answer

To find the value of t, substitute the coordinates of point A into the equation of the line AF:

A(1,t):1=(1)11 1=111 t=10A(-1, t): -1 = -(-1) - 11 \ -1 = 1 - 11 \ t = -10

Thus, the value of t is -10.

Step 2

3.1.2 Grootte van α

99%

104 rated

Answer

The angle α can be calculated using the tangent function:

an α = rac{(-1) - (-10)}{(-1) - (-1)} = 1 \ α = 135°

Therefore, the size of angle α is 135°.

Step 3

3.1.3 Gradiënt van AC, tot die naaste heelgetal

96%

101 rated

Answer

To find the gradient m of line AC, we can use:

m_{AC} = rac{y_C - y_A}{x_C - x_A} = rac{(10) - (-10)}{(4) - (-1)} = rac{20}{5} = 4

The gradient of line AC is approximately 2.

Step 4

3.2 Bepaal die vergelyking van AC in die vorm y = mx + k.

98%

120 rated

Answer

To determine the equation of line AC:

  • We know the gradient m = 2, and we can use point A to find k:
yy1=m(xx1) y(10)=2(x(1)) y+10=2(x+1) y=2x8y - y_1 = m(x - x_1) \ y - (-10) = 2(x - (-1)) \ y + 10 = 2(x + 1) \ y = 2x - 8

Thus, the equation of the line is y=2x8y = 2x - 8.

Step 5

3.3.1 Koördinate van C.

97%

117 rated

Answer

We can find the coordinates of point C by substituting x = 4 into the equation of line AC:

C(4,y) y=2(4)8=0 So,C(4,0).C(4, y) \ y = 2(4) - 8 = 0 \ So, C(4, 0).

Step 6

3.3.2 Grootte van ḞED.

97%

121 rated

Answer

To find the angle ḞED, we have:

  1. EAB=63.43°\angle EAB = 63.43° (given).
  2. Use the fact that opposite angles are equal: $ angle = 63,43° So, angle ḞED = 63.43°.

Step 7

3.4

96%

114 rated

Answer

To find the equation of the circle centered at G and passing through point B:

  • The center is G(x=-11, y=19), and point B(4, 5).
  • The equation of the circle is:
(x - x_G)^2 + (y - y_G)^2 = r^2 \ = r^2 = ((4 - (-11))^2 + (5 - 19)^2) = r^2 $$. Thus, we express it as:

(x + 11)^2 + (y - 19)^2 = r^2.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;