Photo AI

In the diagram, the graph of $f(x)= ext{cos}2x$ is drawn for the interval $x ext{ in } [-270^{ ext{o}},90^{ ext{o}}]$ - NSC Mathematics - Question 6 - 2017 - Paper 2

Question icon

Question 6

In-the-diagram,-the-graph-of--$f(x)=-ext{cos}2x$-is-drawn-for-the-interval-$x--ext{-in-}-[-270^{-ext{o}},90^{-ext{o}}]$-NSC Mathematics-Question 6-2017-Paper 2.png

In the diagram, the graph of $f(x)= ext{cos}2x$ is drawn for the interval $x ext{ in } [-270^{ ext{o}},90^{ ext{o}}]$. 6.1 Draw the graph of $g(x)=2 ext{sin}x-1... show full transcript

Worked Solution & Example Answer:In the diagram, the graph of $f(x)= ext{cos}2x$ is drawn for the interval $x ext{ in } [-270^{ ext{o}},90^{ ext{o}}]$ - NSC Mathematics - Question 6 - 2017 - Paper 2

Step 1

6.1 Draw the graph of $g(x)=2 ext{sin}x-1$

96%

114 rated

Answer

To draw the graph of g(x)=2extsinx1g(x) = 2 ext{sin}x - 1, follow these steps:

  1. Identify key points: The sine function oscillates between -1 and 1, so g(x)g(x) will oscillate between -3 (when extsinx=1 ext{sin}x = -1) and 1 (when extsinx=1 ext{sin}x = 1).

  2. Find intercepts: Set g(x)=0g(x)=0:

    2 ext{sin}x - 1 = 0 \ ext{sin}x = rac{1}{2}

    The solutions within the interval are:

    • x=30extoext(firstquadrant)x = 30^{ ext{o}} ext{ (first quadrant)}
    • x=210extoext(thirdquadrant)x = 210^{ ext{o}} ext{ (third quadrant)}
  3. Turning points: The maximum value occurs at x=90extox=90^{ ext{o}} with g(90exto)=1g(90^{ ext{o}}) = 1 and the minimum occurs at x=270extox=-270^{ ext{o}} with g(270exto)=3g(-270^{ ext{o}}) = -3.

  4. Plot the graph: Sketch the graph from x=270extox=-270^{ ext{o}} to x=90extox=90^{ ext{o}}, ensuring to mark intercepts and turning points.

Step 2

6.2 Show that the $x$-coordinate of $A$ satisfies the equation $ ext{sin}x = rac{-1+ ext{√}5}{2}$

99%

104 rated

Answer

To find the intersection point AA:

  1. Set f(x)f(x) equal to g(x)g(x):

    extcos2x=2extsinx1. ext{cos}2x = 2 ext{sin}x - 1.

  2. Rearranging: We can convert extcos2x ext{cos}2x using the double angle identity:

    extcos2x=12extsin2x ext{cos}2x = 1 - 2 ext{sin}^2x

    Thus,

    12extsin2x=2extsinx1.1 - 2 ext{sin}^2x = 2 ext{sin}x - 1.

  3. Reorganizing into a standard quadratic form:

    2extsin2x+2extsinx2=0.2 ext{sin}^2x + 2 ext{sin}x - 2 = 0.

  4. Simplifying further gives:

    extsin2x+extsinx1=0. ext{sin}^2x + ext{sin}x - 1 = 0.

  5. Apply the quadratic formula:

    b=1,a=1,c=1b = 1, a = 1, c = -1

    ext{sin}x = rac{-b ext{±} ext{√}(b^2 - 4ac)}{2a} = rac{-1 ext{±} ext{√}(1^2 - 4(1)(-1))}{2(1)}

    This simplifies to:

    ext{sin}x = rac{-1 ext{±} ext{√}5}{2}.

  6. Select valid solutions: Since extsinx ext{sin}x can only be between -1 and 1, the valid solution is:

    ext{sin}x = rac{-1+ ext{√}5}{2}

Step 3

6.3 Calculate the coordinates of the points of intersection of graphs of $f$ and $g$

96%

101 rated

Answer

Now we will find the coordinates of the intersection points:

  1. Identify the valid solutions for xx: From the previous part, we found:

    ext{sin}x = rac{-1+ ext{√}5}{2} ext{ which approximates to } 0.618.

  2. Calculate xx values: Using reference angles:

    xextcanbe38.17extoext(1stquadrant)extorx=141.83extoext(2ndquadrant)x ext{ can be } 38.17^{ ext{o}} ext{ (1st quadrant)} ext{ or } x = 141.83^{ ext{o}} ext{ (2nd quadrant)}

  3. Find corresponding yy values: Substituting back into either f(x)f(x) or g(x)g(x) will yield:

    • At x=38.17extox = 38.17^{ ext{o}}: y=f(38.17exto)extgivesyextapproximately0.24y = f(38.17^{ ext{o}}) ext{ gives } y ext{ approximately } 0.24
    • At x=141.83extox = 141.83^{ ext{o}}: y=f(141.83exto)extgivesthesameyextvalue0.24y = f(141.83^{ ext{o}}) ext{ gives the same } y ext{ value } 0.24
  4. Final coordinates: Thus, the coordinates of intersection points are:

    • (38.17exto,0.24)(38.17^{ ext{o}}, 0.24)
    • (141.83exto,0.24)(141.83^{ ext{o}}, 0.24)

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;