Photo AI

In the diagram are the graphs of $f(x) = ext{sin } 2x$ and $h(x) = ext{cos }(x - 45^{ ext{o}})$ for the interval $x ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } x ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } [-180^{ ext{o}} ; 180^{ ext{o}}]$ - NSC Mathematics - Question 6 - 2017 - Paper 2

Question icon

Question 6

In-the-diagram-are-the-graphs-of-$f(x)-=--ext{sin-}-2x$-and-$h(x)-=--ext{cos-}(x---45^{-ext{o}})$-for-the-interval-$x--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}-x--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}-[-180^{-ext{o}}-;-180^{-ext{o}}]$-NSC Mathematics-Question 6-2017-Paper 2.png

In the diagram are the graphs of $f(x) = ext{sin } 2x$ and $h(x) = ext{cos }(x - 45^{ ext{o}})$ for the interval $x ext{ } ext{ } ext{ } ext{ } ext{ } ext{ }... show full transcript

Worked Solution & Example Answer:In the diagram are the graphs of $f(x) = ext{sin } 2x$ and $h(x) = ext{cos }(x - 45^{ ext{o}})$ for the interval $x ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } x ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } [-180^{ ext{o}} ; 180^{ ext{o}}]$ - NSC Mathematics - Question 6 - 2017 - Paper 2

Step 1

Write down the period of $f$.

96%

114 rated

Answer

The period of the function f(x)=extsin2xf(x) = ext{sin } 2x can be determined by the formula:

ext{Period} = rac{360^{ ext{o}}}{n} where nn is the coefficient of xx. Thus, for ff, the period is:

ext{Period} = rac{360^{ ext{o}}}{2} = 180^{ ext{o}}

Step 2

Determine the x-coordinate of B.

99%

104 rated

Answer

The x-coordinate of point B can be found by identifying the intersection points of the graphs ff and hh. The specific value at point B is found on the graph, located at 75exto-75^{ ext{o}}.

Step 3

Use the graphs to solve $2 ext{sin } 2x ext{ } ext{ } ext{ } ext{ } rac{1}{ ext{$ ext{ } ext{ } ext{ } ext{ } ext{ }$} ext{$ ext{ } ext{ } ext{ } ext{ } ext{ }$} ext{ }} ext{cos }x + ext{sin }x$ for the interval $x ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ }[-180^{ ext{o}} ; 180^{ ext{o}}]$.

96%

101 rated

Answer

To solve the equation, we first rewrite it as:

ext{sin } 2x ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } rac{1}{ ext{$ ext{ } ext{ } ext{ } ext{ } ext{ }$} ext{$ ext{ } ext{ } ext{ } ext{ } ext{ }$} ext{ }} ( ext{cos }x + ext{sin }x)

Next, substituting known values and solving gives:

extsin2xextextextextextextextextextextextextextextextextextextextxextextextextextextext[75exto;165exto]. ext{sin } 2x ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } x ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } [-75^{ ext{o}} ; 165^{ ext{o}}].

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;