Photo AI

Solve for $x$: 1.1.1 $(x-3)(x+1)=0$ 1.1.2 $ orall x ext{ such that } \\ \\sqrt{x} = 512$ 1.1.3 $x(x-4) < 0$ Given: $f(x) = x^2 - 5x + 2$ 1.2.1 Solve for $x$ if $f(x)=0$ 1.2.2 For which values of $c$ will $f(x) = c$ have no real roots? Solve for $x$ and $y$: 1.3 $x = 2y + 2$ $x^2 - 2xy + 3y^2 = 4$ 1.4 Calculate the maximum value of $S$ if $S = \frac{6}{x^2 + 2}$ - NSC Mathematics - Question 1 - 2017 - Paper 1

Question icon

Question 1

Solve-for-$x$:--1.1.1--$(x-3)(x+1)=0$--1.1.2--$-orall-x--ext{-such-that-}-\\-\\sqrt{x}-=-512$--1.1.3--$x(x-4)-<-0$--Given:-$f(x)-=-x^2---5x-+-2$--1.2.1--Solve-for-$x$-if-$f(x)=0$--1.2.2--For-which-values-of-$c$-will-$f(x)-=-c$-have-no-real-roots?--Solve-for-$x$-and-$y$:--1.3--$x-=-2y-+-2$--$x^2---2xy-+-3y^2-=-4$--1.4--Calculate-the-maximum-value-of-$S$-if-$S-=-\frac{6}{x^2-+-2}$-NSC Mathematics-Question 1-2017-Paper 1.png

Solve for $x$: 1.1.1 $(x-3)(x+1)=0$ 1.1.2 $ orall x ext{ such that } \\ \\sqrt{x} = 512$ 1.1.3 $x(x-4) < 0$ Given: $f(x) = x^2 - 5x + 2$ 1.2.1 Solve for $x... show full transcript

Worked Solution & Example Answer:Solve for $x$: 1.1.1 $(x-3)(x+1)=0$ 1.1.2 $ orall x ext{ such that } \\ \\sqrt{x} = 512$ 1.1.3 $x(x-4) < 0$ Given: $f(x) = x^2 - 5x + 2$ 1.2.1 Solve for $x$ if $f(x)=0$ 1.2.2 For which values of $c$ will $f(x) = c$ have no real roots? Solve for $x$ and $y$: 1.3 $x = 2y + 2$ $x^2 - 2xy + 3y^2 = 4$ 1.4 Calculate the maximum value of $S$ if $S = \frac{6}{x^2 + 2}$ - NSC Mathematics - Question 1 - 2017 - Paper 1

Step 1

Solve for $x$: 1.1.1 $(x-3)(x+1)=0$

96%

114 rated

Answer

To solve the equation, we need to set each factor to zero:

(x3)=0x=3(x-3) = 0 \\ \Rightarrow x = 3

(x+1)=0x=1(x+1) = 0 \\ \Rightarrow x = -1

Thus, the solutions are x=3x = 3 and x=1x = -1.

Step 2

Solve for $x$: 1.1.2 $ orall x ext{ such that } \\ \\sqrt{x} = 512$

99%

104 rated

Answer

To solve for xx, first square both sides:

extSquare:x=5122 extThusx=262144. ext{Square: } \\ x = 512^2 \\ \ ext{Thus } x = 262144.

Alternatively, expressing 512512 as 838^3, we have: x=(83)2=86=64.x = (8^3)^{2} = 8^{6} = 64.

Both evaluations provide x=64x = 64.

Step 3

Solve for $x$: 1.1.3 $x(x-4) < 0$

96%

101 rated

Answer

To find the interval for which x(x4)<0x(x-4) < 0, we first identify the critical points by setting x(x4)=0x(x-4) = 0:

x=0x=0 2. x=4x=4

Next, test the intervals: (ightarrow0)(- ightarrow 0), (0ightarrow4)(0 ightarrow 4), and (4ightarrowightarrowextInfinity)(4 ightarrow ightarrow ext{Infinity}).

Results:

  • For x<0x < 0: product positive,
  • For 0<x<40 < x < 4: product negative,
  • For x>4x > 4: product positive.

Hence, the solution interval is (0,4)(0, 4).

Step 4

Given: $f(x)=x^2-5x+2$: 1.2.1 Solve for $x$ if $f(x)=0$

98%

120 rated

Answer

To find the roots of f(x)=0f(x) = 0, we use the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} where a=1a = 1, b=5b = -5, and c=2c = 2.

  1. Start by calculating the discriminant: D=b24ac=(5)24(1)(2)=258=17D = b^2 - 4ac = (-5)^2 - 4(1)(2) = 25 - 8 = 17

  2. Next, substituting into the quadratic formula: x=5±172x = \frac{5 \pm \sqrt{17}}{2}

This yields the roots x=2.5+0.5ext17x = 2.5 + 0.5 ext{√17} and x=2.50.5ext17x = 2.5 - 0.5 ext{√17}.

Step 5

Given: $f(x)=x^2-5x+2$: 1.2.2 For which values of $c$ will $f(x) = c$ have no real roots?

97%

117 rated

Answer

The condition for f(x)=cf(x) = c to have no real roots relies on the discriminant being negative:

b24a(c)<0b^2 - 4a(c) < 0 where a=1a=1 and b=5b=-5 leads to:

(5)24(1)(c)<0254c<0c>254=6.25(-5)^2 - 4(1)(c) < 0 \\ \Rightarrow 25 - 4c < 0 \\ \Rightarrow c > \frac{25}{4} = 6.25.

Thus, for c>6.25c > 6.25, the equation will have no real roots.

Step 6

Solve for $x$ and $y$: 1.3 $x = 2y + 2$

97%

121 rated

Answer

We substitute xx in the second equation:

x22xy+3y2=4x^2 - 2xy + 3y^2 = 4 Substituting x=2y+2x = 2y + 2:

(2y+2)22(2y+2)y+3y2=4(2y + 2)^2 - 2(2y + 2)y + 3y^2 = 4

Expanding and simplifying leads to: egin{align*} 4y^2 + 8y + 4 - (4y^2 + 4y) + 3y^2 &= 4 \ \ 3y^2 + 4y + 4 - 4 &= 0 \\ \ 3y^2 + 4y = 0\ \ \Rightarrow y(3y + 4) = 0 \ \ y = 0 ext{ or } y= -\frac{4}{3} \ \ ext{Substituting back: } \ If\ y=0,\ \Rightarrow x=2\ \ ext{If } y=-\frac{4}{3}, \ x = -\frac{2}{3}. \ \ ext{Final values: } (x, y) = (2, 0)\ ext{and } (-\frac{2}{3}, -\frac{4}{3}). \ \ ext{Thus, the solutions are: } (x, y) = (2, 0) \text{or } (-\frac{2}{3}, -\frac{4}{3}).

Step 7

Calculate the maximum value of $S$ if $S = \frac{6}{x^2 + 2}$: 1.4

96%

114 rated

Answer

To maximize S=6x2+2S = \frac{6}{x^2 + 2}, we note:

  1. Calculate the function minimum than x2+2x^2 + 2 which occurs at x=0x = 0.
  2. Thus: S=602+2=62=3S = \frac{6}{0^2 + 2} = \frac{6}{2} = 3.

Negative infinity confirms x2+2>0x^2 + 2 > 0; Thus, the maximum value of S=3S = 3.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other NSC Mathematics topics to explore

;