Photo AI

In the diagram, the graphs of $f(x) = 2 ext{sin}2x$ and $g(x) = - ext{cos}(x + 45^{ ext{o}})$ are drawn for the interval $x ext{ e } [0^{ ext{o}}; 180^{ ext{o}}]$ - NSC Mathematics - Question 6 - 2023 - Paper 2

Question icon

Question 6

In-the-diagram,-the-graphs-of-$f(x)-=-2-ext{sin}2x$-and-$g(x)-=---ext{cos}(x-+-45^{-ext{o}})$-are-drawn-for-the-interval-$x--ext{-e-}-[0^{-ext{o}};-180^{-ext{o}}]$-NSC Mathematics-Question 6-2023-Paper 2.png

In the diagram, the graphs of $f(x) = 2 ext{sin}2x$ and $g(x) = - ext{cos}(x + 45^{ ext{o}})$ are drawn for the interval $x ext{ e } [0^{ ext{o}}; 180^{ ext{o}}]$. ... show full transcript

Worked Solution & Example Answer:In the diagram, the graphs of $f(x) = 2 ext{sin}2x$ and $g(x) = - ext{cos}(x + 45^{ ext{o}})$ are drawn for the interval $x ext{ e } [0^{ ext{o}}; 180^{ ext{o}}]$ - NSC Mathematics - Question 6 - 2023 - Paper 2

Step 1

Write down the period of $f$

96%

114 rated

Answer

The period of f(x)=2extsin2xf(x) = 2 ext{sin} 2x is calculated as follows:

ext{Period} = rac{360^{ ext{o}}}{ ext{frequency}} = rac{360^{ ext{o}}}{2} = 180^{ ext{o}}

Step 2

Determine the range of $g$ in the interval $x \text{ e } [0^{\text{o}}; 180^{\text{o}}]$

99%

104 rated

Answer

To find the range of g(x)=extcos(x+45exto)g(x) = - ext{cos}(x + 45^{ ext{o}}), we note that the cosine function has a range of [1,1][-1, 1]. Thus, for g(x)g(x):

g(x)extwillhavearangeof[1,1]extinvertingyields[1,0]g(x) ext{ will have a range of } [-1, 1] ext{ inverting yields } [-1, 0]

This gives us g(x) ext{ e } [0, rac{ ext{√2}}{2}].

Step 3

Determine the values of $x$, in the interval $x \text{ e } [0^{\text{o}}; 180^{\text{o}}]$, for which:

96%

101 rated

Answer

Step 4

6.3.1 $f(x) \times g(x) > 0$

98%

120 rated

Answer

For the condition f(x)g(x)>0f(x) \cdot g(x) > 0:

  1. Determine where both functions are positive or negative.
  2. Since f(x)=2extsin2x>0f(x) = 2 ext{sin}2x > 0 when 0exto<x<45exto0^{ ext{o}} < x < 45^{ ext{o}}.
  3. Find intersections of the sine function and cosine function for given intervals. Thus, the values of xx satisfying the inequality are:

x e (45o,90o)x \text{ e } (45^{\text{o}}, 90^{\text{o}})

Step 5

6.3.2 $f(x) + 1 \text{ ≤ } 0$

97%

117 rated

Answer

Solving f(x)+1 ≤ 0f(x) + 1 \text{ ≤ } 0:

f(x)1extimplies2extsin2x1extsin2x12f(x) \leq -1 ext{ implies } 2 ext{sin}2x \leq -1 \Rightarrow ext{sin}2x \leq -\frac{1}{2}

This is satisfied at:

x e [105o,165o]x \text{ e } [105^{\text{o}}, 165^{\text{o}}]

Step 6

Determine the value(s) of $k$ in the interval $x \text{ e } [0^{\text{o}}; 180^{\text{o}}]$

97%

121 rated

Answer

Since p(x)=f(x)p(x) = -f(x), we can find:

p(k)=f(k)extwhenf(k)=1.p(k) = -f(k) ext{ when } f(k) = 1.

From earlier calculations, the solutions yield:

k=15o,75ok = 15^{\text{o}}, 75^{\text{o}}

Step 7

Determine the equation of $h$

96%

114 rated

Answer

To translate g(x)=extcos(x+45o)g(x) = - ext{cos}(x + 45^{\text{o}}), we substitute:

h(x)=extcos(x+90o)h(x) = - ext{cos}(x + 90^{\text{o}})

Since hh is simplified, the equation becomes:

h(x)=extsin(x)h(x) = ext{sin}(x)

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;