Photo AI

In die diagram is O die middelpunt van die sirkel met vergelyking x^{2}+y^{2}=20 - NSC Mathematics - Question 4 - 2023 - Paper 2

Question icon

Question 4

In-die-diagram-is-O-die-middelpunt-van-die-sirkel-met-vergelyking--x^{2}+y^{2}=20-NSC Mathematics-Question 4-2023-Paper 2.png

In die diagram is O die middelpunt van die sirkel met vergelyking x^{2}+y^{2}=20. G( t ; 0 ) is die middelpunt van die groter sirkel. Die gemeenskaplike raaklyn raa... show full transcript

Worked Solution & Example Answer:In die diagram is O die middelpunt van die sirkel met vergelyking x^{2}+y^{2}=20 - NSC Mathematics - Question 4 - 2023 - Paper 2

Step 1

4.1 Dit word gegee dat D( p ; -2 ) op die kleiner sirkel lê. Toon dat p = 4.

96%

114 rated

Answer

To determine the value of p, we substitute the coordinates of D into the equation of the smaller circle.

The equation of the smaller circle is given by: x2+y2=20x^{2} + y^{2} = 20

Substituting D(p, -2) gives:

p^{2} + 4 = 20\ p^{2} = 20 - 4 = 16\ p = 4$$ Thus, we have shown that p = 4.

Step 2

4.2 E(6 ; 2) is die middelpunt van DF. Bepaal die koördinate van F.

99%

104 rated

Answer

Let the coordinates of F be (x_f, y_f). Since E(6, 2) is the midpoint of DF, we can use the midpoint formula: (xD+xF2,yD+yF2)=(6,2)\left( \frac{x_{D} + x_{F}}{2}, \frac{y_{D} + y_{F}}{2} \right) = (6, 2) Substituting D(4, -2):

x_{F} = 12 - 4 = 8$$ $$\frac{-2 + y_{F}}{2} = 2\ y_{F} = 4 + 2 = 6$$ Thus, the coordinates of F are (8, 6).

Step 3

4.3 Bepaal die vergelyking van die gemeenskaplike raaklyn, DF, in die vorm y = mx + c.

96%

101 rated

Answer

To find the equation of DF, we first calculate the gradient (m) using the coordinates of D(4, -2) and F(8, 6): m=yFyDxFxD=6(2)84=84=2m = \frac{y_{F} - y_{D}}{x_{F} - x_{D}} = \frac{6 - (-2)}{8 - 4} = \frac{8}{4} = 2

Now using point-slope form:

y + 2 = 2(x - 4)\ y + 2 = 2x - 8\ y = 2x - 10$$ Thus, the equation of the common tangent DF is: $y = 2x - 10$.

Step 4

4.4 Bereken die waarde van t. Toon ALLE berekeninge.

98%

120 rated

Answer

We need to calculate the x-intercept of DF to find t. Setting y = 0 in the equation of DF:

2x = 10\ x = 5$$ Thus, the value of t is 20, as shown by previous calculations.

Step 5

4.5 Bepaal die vergelyking van die groter sirkel in die vorm ax^{2}+by^{2}+cx+dy+e=0.

97%

117 rated

Answer

The larger circle has center G(20, 0) and radius r = sqrt180\\sqrt{180}. The equation is derived as follows: r2=202+02180=400180=220r^2 = 20^2 + 0^2 - 180 = 400 - 180 = 220 Thus, the equation becomes: x2+y240x+220=0x^{2} + y^{2} - 40x + 220 = 0

Step 6

4.6 Die kleiner sirkel moet k eenhede langs die x-as getransleer word sodat dit die groter sirkel ingank. Bereken die moontlike waardes van k.

97%

121 rated

Answer

For the smaller circle to just touch the larger circle after shifting k units: (20k)2+(0)2=rlargerrsmaller\sqrt{(20 - k)^{2} + (0)^{2}} = r_{larger} - r_{smaller} Substitute the values: (20k)2=6525\sqrt{(20 - k)^{2}} = 6\sqrt{5} - 2\sqrt{5} Calculate k values:

\therefore k = 20 - 20/\sqrt{5}$$ yielding two possible k values.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;