Photo AI

In die diagram hieronder is die grafiek van f(x) = -2sin x die interval x ∈ [-180°; 180°] geskets - NSC Mathematics - Question 7 - 2021 - Paper 2

Question icon

Question 7

In-die-diagram-hieronder-is-die-grafiek-van--f(x)-=--2sin-x-die-interval--x-∈-[-180°;-180°]-geskets-NSC Mathematics-Question 7-2021-Paper 2.png

In die diagram hieronder is die grafiek van f(x) = -2sin x die interval x ∈ [-180°; 180°] geskets. 7.1 Op die rooster wat in die ANTWORLDDEBOOK verskaf word, sk... show full transcript

Worked Solution & Example Answer:In die diagram hieronder is die grafiek van f(x) = -2sin x die interval x ∈ [-180°; 180°] geskets - NSC Mathematics - Question 7 - 2021 - Paper 2

Step 1

7.1 Op die rooster wat in die ANTWORDDEBOOK verskaf word, skets die grafiek van g(x) = cos(x - 60°) vir x ∈ [-180°; 180°]. Toon duidelik ALLE snitte met die asse en die draai punte van die grafiek aan.

96%

114 rated

Answer

To sketch the graph of g(x) = cos(x - 60°) for the interval x ∈ [-180°; 180°], first determine the key features of the cosine function, including its amplitude (1), period (360°), and phase shift (60° to the right).

The turning points occur at where the cosine function reaches its maximum (1) and minimum (-1). These can be identified at:

  • Maximums: x = 60°, 420° (-180° is at the start of the interval, thus wrapping back)
  • Minimums: x = -120°

Additionally, the x-intercepts occur where g(x) = 0 depicting the points x = -30° & x = 150°. Mark these points and ensure to include a smooth transition in the sketch.

Step 2

7.2 Skryf die periode van f(3x) neer.

99%

104 rated

Answer

The period of the function f(kx) can be calculated using the formula: extPeriod=360°k ext{Period} = \frac{360°}{k} For (3x) , where k = 3, the period becomes: extPeriod=360°3=120°. ext{Period} = \frac{360°}{3} = 120°. Thus, the period of (3x) is 120°.

Step 3

7.3 Gebruik die grafieke om die waarde van x in die interval x ∈ [-180°; 180°] te bepaal waarvoor f(x) - g(x) = 0.

96%

101 rated

Answer

To find the values of x for which f(x) - g(x) = 0, we assess the intersecting points of both graphs obtained in the prior steps. From the sketch, the graph illustrates that the intersections are at: x = -30°, which corresponds to both functions equating at this angle within the defined interval.

Step 4

7.4 Skryf die waardeverzameling van k neer, k(x) = rac{1}{2}g(x) + 1.

98%

120 rated

Answer

Firstly, identify the range of g(x) = cos(x - 60° which is ext{[-1, 1]}. Through transformation of the function with y = rac{1}{2}g(x) + 1 the following adjustments occur:

  • The amplitude transformation is halved, which changes the range to ext{[-0.5, 0.5]}.
  • Adding 1 shifts the entire range upward by 1, resulting in:
    Range of k(x) becomes:

y ∈ [0.5, 1.5].

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;