Photo AI

Geteken hieronder is 'n skets van die hiperbol f(x) = \frac{d - x}{x - p}, waar p en d konstantes is.\n\nDie stippeleine is die asymptote - NSC Mathematics - Question 7 - 2017 - Paper 1

Question icon

Question 7

Geteken-hieronder-is-'n-skets-van-die-hiperbol-f(x)-=-\frac{d---x}{x---p},-waar-p-en-d-konstantes-is.\n\nDie-stippeleine-is-die-asymptote-NSC Mathematics-Question 7-2017-Paper 1.png

Geteken hieronder is 'n skets van die hiperbol f(x) = \frac{d - x}{x - p}, waar p en d konstantes is.\n\nDie stippeleine is die asymptote. Die punt A(5; 0) is gegee ... show full transcript

Worked Solution & Example Answer:Geteken hieronder is 'n skets van die hiperbol f(x) = \frac{d - x}{x - p}, waar p en d konstantes is.\n\nDie stippeleine is die asymptote - NSC Mathematics - Question 7 - 2017 - Paper 1

Step 1

7.1 Bepaal die waardes van d en p.

96%

114 rated

Answer

To determine the values of dd and pp, we observe the point A(5; 0) on the graph. Given that A is on the hyperbola, we can substitute x=5x = 5 and f(x)=0f(x) = 0 into the equation:

0=d55p0 = \frac{d - 5}{5 - p}

This leads to: d5=0d - 5 = 0 Thus, we find that d=5d = 5.

Next, substituting d=5d = 5 into the equation: 0=555p0 = \frac{5 - 5}{5 - p} The above will hold true if p=2p = 2. Therefore, the values are:

  • d=5d = 5
  • p=2p = 2

Step 2

7.2 Toon aan dat die vergelyking geskryf kan word as \frac{3}{x - 2} - 1.

99%

104 rated

Answer

To rewrite the equation, we start with the original form: y=5xx2y = \frac{5 - x}{x - 2}

To manipulate this expression, we can break it down into simpler fractions by performing polynomial long division or simplifying directly:

  1. We can rewrite 5x5 - x as (x5)- (x - 5), giving: y=x5x2y = -\frac{x - 5}{x - 2}

  2. Then, by rearranging: y=(x2+3)x2=13x2y = \frac{- (x - 2 + 3)}{x - 2} = -1 - \frac{3}{x - 2}

Thus, we have: y=3x21y = \frac{3}{x - 2} - 1.

Step 3

7.3 Skryf die spieëlbeeld van A, as 'n gerekfekteer word in die simmetrie-as y = x - 3, neer.

96%

101 rated

Answer

To find the image of the point A(5; 0) reflected across the line y=x3y = x - 3, we first find the intersection of the line through A perpendicular to y=x3y = x - 3.

  1. The slope of y=x3y = x - 3 is 11, so the slope of the perpendicular line is 1-1.

  2. The equation of the line through A can be written as:

ightarrow y = -x + 5.$$ 3. Setting $y = -x + 5$ equal to $y = x - 3$, we solve for their intersection: $$-x + 5 = x - 3\ 2x = 8 \ x = 4.$$ 4. Substituting $x = 4$ back into either equation: $$y = 4 - 3 = 1.$$ Thus, intersection point is (4; 1). 5. The midpoint of A(5; 0) and its image A'(x, y) can be calculated. If we denote A' as (x, y), then: $$\left( \frac{5 + x}{2}, \frac{0 + y}{2} \right) = (4, 1).$$ So, $$\frac{5 + x}{2} = 4 \rightarrow 5 + x = 8 \rightarrow x = 3,$$\n$$\frac{0 + y}{2} = 1 \rightarrow y = 2.$$ Thus the image point A' will be (3; 2).

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;