‘n Kwadraatiese ry het die volgende eienskappe:
Die tweede verskil is 10:
Die eerste twee terme is gelyk, d.w.s - NSC Mathematics - Question 3 - 2023 - Paper 1
Question 3
‘n Kwadraatiese ry het die volgende eienskappe:
Die tweede verskil is 10:
Die eerste twee terme is gelyk, d.w.s. $T_1 = T_2$.
$T_1 + T_2 + T_3 = 28$
3.1 Toon dat... show full transcript
Worked Solution & Example Answer:‘n Kwadraatiese ry het die volgende eienskappe:
Die tweede verskil is 10:
Die eerste twee terme is gelyk, d.w.s - NSC Mathematics - Question 3 - 2023 - Paper 1
Step 1
3.1 Toon dat die algemene term van die ry $T_n = 5n^2 - 15n + 16$ is.
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve for the general term of the quadratic sequence, we start with the information given:
The second difference is 10, which indicates that the coefficient of n2 is half of the second difference. Thus, we have:
2a=10⇒a=5
The first two terms are equal, meaning:
T1=T2
The sum of the first three terms:
T1+T2+T3=28
Using the general form of a quadratic sequence: Tn=an2+bn+c
Substituting a=5:
Tn=5n2+bn+c
We know:
T1=5(12)+b(1)+c=5+b+c
T2=5(22)+b(2)+c=20+2b+c
Since T1=T2, we can set the equations equal:
5+b+c=20+2b+c
This simplifies to:
b=15
Plugging b back into Tn gives us:
Tn=5n2−15n+c
Now substituting into the equation for the sum:
T1+T2+T3=5+15+c=28
Sufficient to determine:
20+c=28⇒c=8
Therefore, the general term is:
Tn=5n2−15n+16
Step 2
3.2 Is 216 ‘n term van hierdie ry? Motiveer jou antwoord met die nodige berekening.
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To determine if 216 is a term in the sequence given by:
Tn=5n2−15n+16
we set:
Tn=216
This leads to the equation:
5n2−15n+16=216
Subtracting 216 from both sides gives:
5n2−15n−200=0
To simplify, we divide the entire equation by 5:
n2−3n−40=0
Factoring the quadratic equation:
(n−8)(n+5)=0
Thus:
n=8orn=−5
Since n must be a positive integer, we conclude:
n=8
Hence, 216 is indeed a term of the quadratic sequence corresponding to n=8.