Photo AI

Beskou die linêre ry: 5 ; 7 ; 9 ; .. - NSC Mathematics - Question 4 - 2021 - Paper 1

Question icon

Question 4

Beskou-die-linêre-ry:-5-;-7-;-9-;-..-NSC Mathematics-Question 4-2021-Paper 1.png

Beskou die linêre ry: 5 ; 7 ; 9 ; ... 4.1 Bepaal $T_{51}$. 4.2 Bereken die som van die eerste 51 terme. 4.3 Skryf die uitbreiding van $\sum_{n=1}^{5000}(2n+3)$ ne... show full transcript

Worked Solution & Example Answer:Beskou die linêre ry: 5 ; 7 ; 9 ; .. - NSC Mathematics - Question 4 - 2021 - Paper 1

Step 1

Bepaal $T_{51}$

96%

114 rated

Answer

In 'n rekenkundige ry is die algemene term gegee deur die formule:

Tn=a+(n1)dT_n = a + (n-1)d

waar aa die eerste term is en dd die verskil tussen die terme.

Vir hierdie ry is a=5a = 5 en d=2d = 2. So, om T51T_{51} te vind:

T51=5+(511)2=5+100=105.T_{51} = 5 + (51-1) \cdot 2 = 5 + 100 = 105.

Step 2

Bereken die som van die eerste 51 terme

99%

104 rated

Answer

Die som van die eerste nn terme van 'n rekenkundige ry kan bereken word met die formule:

Sn=n2[2a+(n1)d]S_n = \frac{n}{2} [2a + (n-1)d]

Hier is n=51n = 51, dus:

S51=512[25+(511)2]=512[10+100]=512110=2805.S_{51} = \frac{51}{2} [2 \cdot 5 + (51-1) \cdot 2] = \frac{51}{2} [10 + 100] = \frac{51}{2} \cdot 110 = 2805.

Step 3

Skryf die uitbreiding van $\sum_{n=1}^{5000}(2n+3)$ neer

96%

101 rated

Answer

Die uitbreiding van die som word:

n=15000(2n+3)=(21+3)+(22+3)+(23+3)+...+(25000+3)\sum_{n=1}^{5000}(2n+3) = (2 \cdot 1 + 3) + (2 \cdot 2 + 3) + (2 \cdot 3 + 3) + ... + (2 \cdot 5000 + 3)

Die eerste 3 terme is:

5,7,95, 7, 9

Die laaste term is:

25000+3=10003.2 \cdot 5000 + 3 = 10003.

Step 4

Bereken vervolgens andersins, $\sum_{n=1}^{4999}(2n+3)+\sum_{n=1}^{5000}(-2n-1)$

98%

120 rated

Answer

Berekende die twee somme apart:

  1. n=14999(2n+3)=(21+3)+(22+3)+...+(24999+3)\sum_{n=1}^{4999}(2n+3) = (2 \cdot 1 + 3) + (2 \cdot 2 + 3) + ... + (2 \cdot 4999 + 3)

  2. n=15000(2n1)=(211)+(221)+...+(250001)\sum_{n=1}^{5000}(-2n-1) = (-2 \cdot 1 - 1) + (-2 \cdot 2 - 1) + ... + (-2 \cdot 5000 - 1)

Die totale som:

n=14999(2n+3)+n=15000(2n1)=2499925000=1.\sum_{n=1}^{4999}(2n+3) + \sum_{n=1}^{5000}(-2n-1) = 24\,999 - 25\,000 = -1.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;