Photo AI

Beskou die volgende meetkundige ry: 1 024 ; 256 ; 64 ; .. - NSC Mathematics - Question 3 - 2022 - Paper 1

Question icon

Question 3

Beskou-die-volgende-meetkundige-ry:-1-024-;-256-;-64-;-..-NSC Mathematics-Question 3-2022-Paper 1.png

Beskou die volgende meetkundige ry: 1 024 ; 256 ; 64 ; ... Bereken: 3.1.1 Die 10de term van die ry 3.1.2 \[ \sum_{p=0}^{9} 256(4^{-p}) \] 3.2 Die eerste twee ter... show full transcript

Worked Solution & Example Answer:Beskou die volgende meetkundige ry: 1 024 ; 256 ; 64 ; .. - NSC Mathematics - Question 3 - 2022 - Paper 1

Step 1

Die 10de term van die ry

96%

114 rated

Answer

In a geometric sequence, the n-th term can be calculated using the formula:

[ T_n = ar^{(n-1)} ]

Here, we identify:

  • First term, ( a = 1024 )
  • Common ratio, ( r = \frac{256}{1024} = \frac{1}{4} )
  • For the 10th term, ( n = 10 )

Now substituting into the formula:

[ T_{10} = 1024 \left( \frac{1}{4} \right)^{(10-1)} = 1024 \left( \frac{1}{4} \right)^{9} = 256 ]

Step 2

Die som van die eerste 10 terme

99%

104 rated

Answer

Using the formula for the sum of the first n terms of a geometric series:

[ S_n = \frac{a(1 - r^n)}{1 - r} ]

We substitute:

  • First term, ( a = 1024 )
  • Common ratio, ( r = \frac{1}{4} )
  • Number of terms, ( n = 10 )

Calculating:

[ S_{10} = \frac{1024(1 - (\frac{1}{4})^{10})}{1 - \frac{1}{4}} = \frac{1024(1 - \frac{1}{1048576})}{\frac{3}{4}} = \frac{1024 \cdot \frac{1048575}{1048576}}{\frac{3}{4}} = 87381.33 ]

Step 3

Bepaal die waardes van t waarvoor die ry sal konvergeer

96%

101 rated

Answer

To find the values of t for which the geometric series converges, we first determine the ratio:

The general term is given as:

[ r = \frac{t^2 + 9t + 27 + 27}{2} ]

For convergence, the absolute value of the common ratio must be less than 1:

[ |r| < 1 ]

From our earlier simplification: [ -1 < \frac{t^2 + 9t + 27}{2} < 1 ]

Solving these inequalities gives the values of t. The simplified equation leads us to:

[ -5 < t < -1 ]

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;