Photo AI

Gegee die volgende kwadratiese ry: -2; 0; 3; 7; .. - English General - NSC Mathematics - Question 2 - 2016 - Paper 1

Question icon

Question 2

Gegee-die-volgende-kwadratiese-ry:---2;-0;-3;-7;-..-English General-NSC Mathematics-Question 2-2016-Paper 1.png

Gegee die volgende kwadratiese ry: -2; 0; 3; 7; ... 2.1.1 Skryf die waarde van die volgende term van hierdie ry neer. 2.1.2 Bepaal 'n uitdrukking vir die n<sup>e<... show full transcript

Worked Solution & Example Answer:Gegee die volgende kwadratiese ry: -2; 0; 3; 7; .. - English General - NSC Mathematics - Question 2 - 2016 - Paper 1

Step 1

2.1.1 Skryf die waarde van die volgende term van hierdie ry neer.

96%

114 rated

Answer

In the given quadratic sequence, the pattern indicates that each term increments based on a quadratic formula. The difference between terms reveals that we need to identify the next term after 7. Continuing the pattern, we find that the next term is 12.

Step 2

2.1.2 Bepaal 'n uitdrukking vir die n<sup>e</sup> term van hierdie ry.

99%

104 rated

Answer

To determine the n<sup>e</sup> term, we recognize that the sequence can be represented as:

Tn=a+(n1)dT_n = a + (n - 1)d

where aa is the first term and dd the common difference. With the first term T1=2T_1 = -2 and the pattern of differences, we derive: Tn=2+(n1)3=2+3n3=3n5.T_n = -2 + (n - 1) * 3 = -2 + 3n - 3 = 3n - 5.

Step 3

2.1.3 Watter term van die ry sal gelyk aan 322 wees?

96%

101 rated

Answer

Setting the expression from part 2.1.2 equal to 322, we have:

3n5=3223n - 5 = 322

Solving for n:

3n=322+53n = 322 + 5 3n=3273n = 327 n=109.n = 109. Thus, the 109<sup>e</sup> term of the sequence equals 322.

Step 4

2.2.1 Bepaal die geneem verskil van hierdie ry.

98%

120 rated

Answer

Given the arithmetic sequence where the second term is 8 and the fifth term is 10, we can establish that the common difference dd is given by:

a+d=8a + d = 8 a+4d=10.a + 4d = 10. Subtracting these, we find 3d=2od=23.3d = 2 o d = \frac{2}{3}.

Step 5

2.2.2 Skryf die som van die eerste 50 terme van hierdie ry neer, deur sigmatuurte te gebruik.

97%

117 rated

Answer

The sum of an arithmetic series can be calculated with the formula:

Sn=n2(2a+(n1)d)S_n = \frac{n}{2} (2a + (n-1)d)

Here, substituting the values: n=50n = 50, a=8a = 8, and using d=23d = \frac{2}{3}:

S50=502(2×8+49×23)=25(16+983)=25(48+983)=25×1463=36503.S_{50} = \frac{50}{2} (2 \times 8 + 49 \times \frac{2}{3}) = 25(16 + \frac{98}{3}) = 25(\frac{48 + 98}{3}) = 25 \times \frac{146}{3} = \frac{3650}{3}.

Step 6

2.2.3 Bepaal die som van die eerste 50 terme van hierdie ry.

97%

121 rated

Answer

Continuing from the previous calculation, we find that the derived sum of the first 50 terms was computed to yield: S_{50} = \frac{3650}{3}.\ Therefore, the final answer is confirmed.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;