Photo AI

Ben, Nhlanhla, Owen, Derick en 6 ander atlete neem aan 'n 100 m-resies deel - NSC Mathematics - Question 10 - 2018 - Paper 1

Question icon

Question 10

Ben,-Nhlanhla,-Owen,-Derick-en-6-ander-atlete-neem-aan-'n-100-m-resies-deel-NSC Mathematics-Question 10-2018-Paper 1.png

Ben, Nhlanhla, Owen, Derick en 6 ander atlete neem aan 'n 100 m-resies deel. Daar word 'n baan aan elke atleet toegeken om in te hardloop. Die atletiekbaan het 10 ba... show full transcript

Worked Solution & Example Answer:Ben, Nhlanhla, Owen, Derick en 6 ander atlete neem aan 'n 100 m-resies deel - NSC Mathematics - Question 10 - 2018 - Paper 1

Step 1

10.1 Op hoeveel verskillende maniere kan 'n baan aan al die atlete toegeken word?

96%

114 rated

Answer

Die number of ways to assign 10 lanes to 8 athletes can be calculated using the permutation formula:

10!=3,628,80010! = 3,628,800

So, there are 3,628,800 different ways to assign lanes.

Step 2

10.2 Vier atlete wat aan die item deelneem, dring daarop aan om in aangrensende bane geplas te word. Op hoeveel verskillende maniere kan die bane nou aan die atlete toegeken word?

99%

104 rated

Answer

If 4 athletes need to be placed in adjacent lanes, we can treat them as a single block.

This gives us 7 blocks (the block of 4 athletes + the 6 remaining athletes).

Therefore, the number of ways to arrange these blocks is:

7!=5,0407! = 5,040

The number of ways to arrange the 4 athletes within the block is:

4!=244! = 24

Thus, the total number of arrangements is:

4!×7!=120,9604! \times 7! = 120,960

Step 3

10.3 Indien bane willekeurig aan atlete toegeken word, bepaal die waarskynlikheid dat Ben in baan 1, Nhlanhla in baan 3, Owen in baan 5 en Derick in baan 7 geplas sal word.

96%

101 rated

Answer

To find the probability that specific athletes are assigned to specific lanes:

The total number of ways to assign 10 athletes to 10 lanes is:

10!=3,628,80010! = 3,628,800

There is only 1 way to assign Ben to lane 1, Nhlanhla to lane 3, Owen to lane 5, and Derick to lane 7.

So, the probability is:

P=110!=13,628,800=0.0000002756P = \frac{1}{10!} = \frac{1}{3,628,800} = 0.0000002756

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;